Is Every Line Integral Zero with Green's Theorem?

EV33
Messages
192
Reaction score
0

Homework Statement


Use Green's Theorem to evaluate the line integralalone the given positvely oriented curve.

∫_{c} sin(y)dx+xcos(y)dy, C is the ellipse x2+xy+y2=4



Homework Equations





The Attempt at a Solution


∫∫(cos(y)-cos(y))dA=∫∫0dA

Because this ends up being the double integral of zero, does this just mean my answer is zero?
 
Physics news on Phys.org
That's right. The line integral around any closed curve will be 0.
 
Yup.
 
Awesome. Thank you both.
 
Correction: The line integral around any closed curve will be 0 ONLY if the integral is on a conservative field. otherwise it won't be zero for all cases.
 
gomunkul51 said:
Correction: The line integral around any closed curve will be 0 ONLY if the integral is on a conservative field. otherwise it won't be zero for all cases.

Mmm. Well, sure. F=(sin(y),x*cos(y)) is conservative. So the integral of F.dr is zero around any closed curve. I didn't mean ANY F. Did that really need a 'correction'?
 
Dick said:
Mmm. Well, sure. F=(sin(y),x*cos(y)) is conservative. So the integral of F.dr is zero around any closed curve. I didn't mean ANY F. Did that really need a 'correction'?

It's a subtle point, I wanted EV33 to know that :)
It is very easy to make that mistake and think that any close line integral is zero.
 
Back
Top