latentcorpse
- 1,411
- 0
ok so Faraday's Law says that
\oint_C \vec{E} \cdot \vec{dr} = -\frac{\partial}{\partial t} \int_S \vec{B} \cdot \vec{dA}
but we know that \vec{E}=-\nabla \varphi
and so \oint_C \vec{E} \cdot \vec{dr} =-\oint_C \nabla \times \nabla \varphi \cdot \vec{dA}=0 by Stokes' Theorem.
therefore, why isn't the RHS of Farady's Law just 0 all the time?
\oint_C \vec{E} \cdot \vec{dr} = -\frac{\partial}{\partial t} \int_S \vec{B} \cdot \vec{dA}
but we know that \vec{E}=-\nabla \varphi
and so \oint_C \vec{E} \cdot \vec{dr} =-\oint_C \nabla \times \nabla \varphi \cdot \vec{dA}=0 by Stokes' Theorem.
therefore, why isn't the RHS of Farady's Law just 0 all the time?