Is it possible to integrate this new function?

  • Thread starter Thread starter dowjonez
  • Start date Start date
  • Tags Tags
    Integration
dowjonez
Messages
21
Reaction score
0
Doing a friction fluid denisty question and have to figure out why it can't be done.

d(1-v) / (1-v) = dt would integrate to ln |1-v| = t + c



now I am faced with the same integration but the function has changed and now I am staring a

d(1-v) / (1 - v^4) = dt is it possible to integrate that?
 
Physics news on Phys.org
Yes. First, write 1-v^4 as (1-v^2)((1+v^2) then do a partial fraction decomposition. Also, rewrite d(1-v) as -dv and you should end up with something like

-\frac {1}{2} \tan^{-1}v - \frac {1}{4}\frac{\ln v -1}{\ln v + 1}
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top