Is Lorentz invariance is true in curved spacetime?

kroni
Messages
79
Reaction score
10
Hello,
I am re-reading a book about quantum physics and general relativity. To introduce representation of the lorentz group, they explain the definition of lorentz group as the group of transformation that let x² + y² ... -t² unchanged.
But in cuved space the distance is not the same as in minkowsky space, it's the integral of the metric * dx. Is the lorentz invariance still aviable ? and the related decomposition ?
 
Physics news on Phys.org
kroni said:
Hello,
I am re-reading a book about quantum physics and general relativity. To introduce representation of the lorentz group, they explain the definition of lorentz group as the group of transformation that let x² + y² ... -t² unchanged.
But in curved space the distance is not the same as in minkowsky space, it's the integral of the metric * dx. Is the lorentz invariance still aviable ? and the related decomposition ?

Lorentz invariance is still locally true - the metric around any given point is arbitrarily close to the Minkowski metric within a sufficiently small area around that point.
 
  • Like
Likes bcrowell
Another way of putting it is that there's a tangent space at each point. Things like momentum vectors live in the tangent space. This paper is also nice: Nowik and Katz, Differential geometry via infinitesimal displacements, http://arxiv.org/abs/1405.0984
 
Curved space-time is locally Minkowski and so there is a local lorentz group among the group of coordinate diffeomorphisms leaving an event point invariant. There is local Lorentz invariance etc. This is why in GR you work with Tensor *fields*. (tensor valued functions of position. (tensors being more general representations of the local orthogonal group, i.e. the Lorentz group))

As you noted, the local Lorentz group leaves the differential quantity ds^2=dx^2 + dy^2 + dz^2 -dt^2 unchanged... that is provided your coordinates are orthonormal with respect to the local space-time geometry. To be more general we express this invariant as a quadratic form of the differentials in whatever coordinates you are using and the quadratic form coefficients are the components of your metric tensor.

As you can imagine the math gets a bit hairier to express all this in general.
 
Tanks for your answer ! I under stand it !
 
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Does the speed of light change in a gravitational field depending on whether the direction of travel is parallel to the field, or perpendicular to the field? And is it the same in both directions at each orientation? This question could be answered experimentally to some degree of accuracy. Experiment design: Place two identical clocks A and B on the circumference of a wheel at opposite ends of the diameter of length L. The wheel is positioned upright, i.e., perpendicular to the ground...
According to the General Theory of Relativity, time does not pass on a black hole, which means that processes they don't work either. As the object becomes heavier, the speed of matter falling on it for an observer on Earth will first increase, and then slow down, due to the effect of time dilation. And then it will stop altogether. As a result, we will not get a black hole, since the critical mass will not be reached. Although the object will continue to attract matter, it will not be a...
Back
Top