Is Over 100% Solidity Normal for Wind Turbine Blades Near the Hub?

AI Thread Summary
Calculating turbine design parameters reveals that a solidity exceeding 100% near the hub is not typical, especially for a 6-bladed turbine, which is also unconventional. Most modern horizontal axis wind turbines (HAWTs) have a solidity of around 10% or less, with a 6-bladed design resulting in higher solidity values. The equations provided for calculating tip speed ratio and local chord length are correct, but hand calculations are recommended to verify results. Expected solidity values should range from approximately 7% to 30%, depending on design specifics. It's essential to consider the relationship between solidity and tip speed ratio for optimal turbine efficiency.
fugg
Messages
19
Reaction score
0
Hello. I'm calculating the different parameters of a turbine design but I have some trouble with the solidity. The solidity near the hub exceeds 100%, but is an average of ~27% for a 6 bladed turbine. I'm just wondering if anyone has had experience in turbine design and if +100% solidity is normal (i.e. normal for blades to overlap each other near hub) or not. Any help would be much appreciated.
 
Engineering news on Phys.org
I have a little experience in wind turbine design, and no a solidity of greater than 100% is not normal. A wind turbine with 6 blades isn't normal either. Solidity over 10% of the entire turbine is relatively uncommon for most modern HAWTs.
 
As the blade count increases, the solidity naturally does too. Sorry it wasn't 27% I was thinking of a different figure, but ~12%, which given that a 3 blade turbine would be ~9% seems reasonable. A 6 bladed turbine is indeed not conventional, but noise and tip speed ratio are my priorities hence the blade count.
I'm attaching an Excel sheet detailing the calculations. Am I missing something very obvious? The following equations were used:

Tip Speed Ratio: λ= ΩR/U, at distance r: λ_r=λ r/R
Angle of relative wind: φ= 2/3 〖tan〗^(-1) 1/λ_r
Local cord length: cl= (8πr/(BC_l ))(1-cosφ)
Optimum solidity for B blade number: σ≅ B/Nπ (N∑(i=1)(cl/R))

N=number of blade sections, 10 in this case.
Doesn't copy very well but you get the idea. I assumed the Coefficient of lift (Cl) to be 1 across the span to make it simple though I don't think it's too much of a stretch?
 

Attachments

Aww, no one has worked in wind turbine design?
 
The equations you have listed are correct. It is easy to check your work, just do a few hand calculations to confirm the equations have been properly entered.

As for the results you should get solidity between ~7% (although single blade designs are even less) and ~30%. To check a specific turbine make sure that in the case of a high solidity the tip speed ratio is low and for low solidity the tip speed ratio is high. There are equations for finding the most efficient ratio, but not all turbines are efficient so use this as a guideline and not a rule. To make this simple I have attached a graph of solidity vs tip speed ratio.



www.charlieseviour.co.uk
 

Attachments

  • tsr_vs_solidity.jpg
    tsr_vs_solidity.jpg
    24.3 KB · Views: 777
Posted June 2024 - 15 years after starting this class. I have learned a whole lot. To get to the short course on making your stock car, late model, hobby stock E-mod handle, look at the index below. Read all posts on Roll Center, Jacking effect and Why does car drive straight to the wall when I gas it? Also read You really have two race cars. This will cover 90% of problems you have. Simply put, the car pushes going in and is loose coming out. You do not have enuff downforce on the right...
I'm trying to decide what size and type of galvanized steel I need for 2 cantilever extensions. The cantilever is 5 ft. The space between the two cantilever arms is a 17 ft Gap the center 7 ft of the 17 ft Gap we'll need to Bear approximately 17,000 lb spread evenly from the front of the cantilever to the back of the cantilever over 5 ft. I will put support beams across these cantilever arms to support the load evenly
Thread 'What's the most likely cause for this carbon seal crack?'
We have a molded carbon graphite seal that is used in an inline axial piston, variable displacement hydraulic pump. One of our customers reported that, when using the “A” parts in the past, they only needed to replace them due to normal wear. However, after switching to our parts, the replacement cycle seems to be much shorter due to “broken” or “cracked” failures. This issue was identified after hydraulic fluid leakage was observed. According to their records, the same problem has occurred...
Back
Top