Is Over 100% Solidity Normal for Wind Turbine Blades Near the Hub?

AI Thread Summary
Calculating turbine design parameters reveals that a solidity exceeding 100% near the hub is not typical, especially for a 6-bladed turbine, which is also unconventional. Most modern horizontal axis wind turbines (HAWTs) have a solidity of around 10% or less, with a 6-bladed design resulting in higher solidity values. The equations provided for calculating tip speed ratio and local chord length are correct, but hand calculations are recommended to verify results. Expected solidity values should range from approximately 7% to 30%, depending on design specifics. It's essential to consider the relationship between solidity and tip speed ratio for optimal turbine efficiency.
fugg
Messages
19
Reaction score
0
Hello. I'm calculating the different parameters of a turbine design but I have some trouble with the solidity. The solidity near the hub exceeds 100%, but is an average of ~27% for a 6 bladed turbine. I'm just wondering if anyone has had experience in turbine design and if +100% solidity is normal (i.e. normal for blades to overlap each other near hub) or not. Any help would be much appreciated.
 
Engineering news on Phys.org
I have a little experience in wind turbine design, and no a solidity of greater than 100% is not normal. A wind turbine with 6 blades isn't normal either. Solidity over 10% of the entire turbine is relatively uncommon for most modern HAWTs.
 
As the blade count increases, the solidity naturally does too. Sorry it wasn't 27% I was thinking of a different figure, but ~12%, which given that a 3 blade turbine would be ~9% seems reasonable. A 6 bladed turbine is indeed not conventional, but noise and tip speed ratio are my priorities hence the blade count.
I'm attaching an Excel sheet detailing the calculations. Am I missing something very obvious? The following equations were used:

Tip Speed Ratio: λ= ΩR/U, at distance r: λ_r=λ r/R
Angle of relative wind: φ= 2/3 〖tan〗^(-1) 1/λ_r
Local cord length: cl= (8πr/(BC_l ))(1-cosφ)
Optimum solidity for B blade number: σ≅ B/Nπ (N∑(i=1)(cl/R))

N=number of blade sections, 10 in this case.
Doesn't copy very well but you get the idea. I assumed the Coefficient of lift (Cl) to be 1 across the span to make it simple though I don't think it's too much of a stretch?
 

Attachments

Aww, no one has worked in wind turbine design?
 
The equations you have listed are correct. It is easy to check your work, just do a few hand calculations to confirm the equations have been properly entered.

As for the results you should get solidity between ~7% (although single blade designs are even less) and ~30%. To check a specific turbine make sure that in the case of a high solidity the tip speed ratio is low and for low solidity the tip speed ratio is high. There are equations for finding the most efficient ratio, but not all turbines are efficient so use this as a guideline and not a rule. To make this simple I have attached a graph of solidity vs tip speed ratio.



www.charlieseviour.co.uk
 

Attachments

  • tsr_vs_solidity.jpg
    tsr_vs_solidity.jpg
    24.3 KB · Views: 779
How did you find PF?: Via Google search Hi, I have a vessel I 3D printed to investigate single bubble rise. The vessel has a 4 mm gap separated by acrylic panels. This is essentially my viewing chamber where I can record the bubble motion. The vessel is open to atmosphere. The bubble generation mechanism is composed of a syringe pump and glass capillary tube (Internal Diameter of 0.45 mm). I connect a 1/4” air line hose from the syringe to the capillary The bubble is formed at the tip...
Thread 'Physics of Stretch: What pressure does a band apply on a cylinder?'
Scenario 1 (figure 1) A continuous loop of elastic material is stretched around two metal bars. The top bar is attached to a load cell that reads force. The lower bar can be moved downwards to stretch the elastic material. The lower bar is moved downwards until the two bars are 1190mm apart, stretching the elastic material. The bars are 5mm thick, so the total internal loop length is 1200mm (1190mm + 5mm + 5mm). At this level of stretch, the load cell reads 45N tensile force. Key numbers...
I'd like to create a thread with links to 3-D Printer resources, including printers and software package suggestions. My motivations are selfish, as I have a 3-D printed project that I'm working on, and I'd like to buy a simple printer and use low cost software to make the first prototype. There are some previous threads about 3-D printing like this: https://www.physicsforums.com/threads/are-3d-printers-easy-to-use-yet.917489/ but none that address the overall topic (unless I've missed...
Back
Top