Is T an Isomorphism of F^2? Finding Necessary Conditions

fk378
Messages
366
Reaction score
0

Homework Statement


Let T be defined on F^2 by (x1,x2)T=(w*x1+y*x2, z*x1+v*x2)
where w,y,z,v are some fixed elements in F.

(a) Prove that T is a homomorphism of F^2 into itself.
(b) Find necessary and sufficient conditions on w,y,z,v so that T is an isomorphism.

The Attempt at a Solution



I already proved (a).
Part (b), I'm not sure what it means. For T to be an isomorphism it has to be one-to-one and onto.
To show one-to-one, I need to show that the kernel is 0.
Is showing that T is into F^2 the same thing as saying it is onto F^2? If not, what's the difference?
 
Last edited:
Physics news on Phys.org
Into is different from onto. T is onto F^2 provided that for every (u, v) in F^2 there is some (x1, x2) in F^2 such that T(x1, x2) = (u, v).

A simple example of an into function is e^x, which maps the real numbers to a subset of the real numbers.

For the one-to-one part, show that the kernel consists of (0, 0) and nothing else. IOW, if T(x1, x2) = (0, 0), then x1 = 0 and x2 = 0.
 
Mark44 said:
Into is different from onto. T is onto F^2 provided that for every (u, v) in F^2 there is some (x1, x2) in F^2 such that T(x1, x2) = (u, v).

A simple example of an into function is e^x, which maps the real numbers to a subset of the real numbers.

For the one-to-one part, show that the kernel consists of (0, 0) and nothing else. IOW, if T(x1, x2) = (0, 0), then x1 = 0 and x2 = 0.

Would it have to be that x1 and x2 equal 0 only? What about the fixed elements in F? Also, the question asks about conditions on the elements of F.
 
fk378 said:
Would it have to be that x1 and x2 equal 0 only?
Yes, and that's exactly what I said.

BTW, I didn't notice it earlier, but I think you have copied the definition of the function incorrectly. You have
(x1,x2)T=(w*x1+y*x2, z*x1,v*x2)
I think it should be
T(x1,x2)=(w*x1+y*x2, z*x1 + v*x2)
For T to be a map from F^2 onto itself, the image vector has to have two coordinates, not three.

fk378 said:
Also, the question asks about conditions on the elements of F.

\begin{eqnarray}<br /> T\left (<br /> \begin{array}{c} \nonumber<br /> x_1 \\<br /> x_2<br /> \end{array}<br /> \right ) = \left [{\begin{array}{cc}<br /> w &amp; y \\<br /> z &amp; v<br /> \end{array}<br /> \right ]<br /> <br /> \left ( \begin{array}{c}<br /> x_1 \\<br /> x_2<br /> \end{array}<br /> \right )\end{equation}

What conditions should you place on the elements of the 2 x 2 matrix to make T one-to-one?
 
I don't see what difference the 2x2 matrix would have for T to be one-to-one if we're already saying that x1=x2=0. Is it just that the entries must be scalars? And how can I show that x1=x2=0, i.e. kerT=(0,0), in order to show that T is one-to-one, anyway?
 
There's a connection between the determinant of the matrix of a transformation, and the one-to-one-ness of the transformation, and the dimension of the nullspace of the transformation.

If you have a linear transformation, it will always be true that T(0, 0) = (0, 0). (I'm assuming the transformation is from a 2D vector space to a 2D vector space in my notation.) The key is whether there are any vectors (x1, x2) that are nonzero, that also map to (0, 0).

For example, with a different transformation T: R^2 \rightarrow R^2, if the matrix of the transformation is [0 1; 0 0], T(1, 0) = (0, 0), so the nullspace does not consist only of {(0, 0)}.
 
Oh ok, so the vectors have to be linearly independent? And the determinant has to be zero so that it is invertible?
 
fk378 said:
Oh ok, so the vectors have to be linearly independent?
I don't know what that has to do with it.
fk378 said:
And the determinant has to be zero so that it is invertible?

No, if the determinant is zero, the matrix is NOT invertible, which means that the transformation isn't one-to-one and doesn't have an inverse.
 
Oops, I meant the determinant cannot be zero. So if the determinant is 0 then this means the transformation is one-to-one since it has an inverse?
 
  • #10
fk378 said:
Oops, I meant the determinant cannot be zero. So if the determinant is 0 then this means the transformation is one-to-one since it has an inverse?
No again. Read what I wrote in my previous post.
 
  • #11
So if the determinant is not 0 then this means the transformation is one-to-one since it has an inverse?
 
Back
Top