Is the change in internal energy really a state function?

AI Thread Summary
The discussion centers on the confusion regarding whether the change in internal energy is a state function, given that the energy transferred thermally in two different processes (A and B) appears to differ. Calculations show that the heat transferred in process A (Q_A) is less than in process B (Q_B), which initially seems contradictory to the assumption that internal energy changes should be equal if the initial and final states are the same. However, it is clarified that while the magnitudes of Q_A and Q_B differ, the signs indicate that Q_A is greater than Q_B when considering the direction of heat transfer. This resolves the confusion, confirming that there is no contradiction regarding the state function nature of internal energy. The conclusion emphasizes that the change in internal energy remains consistent despite the differences in thermal energy transfer.
msw1
Messages
5
Reaction score
2
Homework Statement
(Figure 1) shows two processes, A and B, for moving 3.45 × 10^22 particles of a monatomic ideal gas from state i to state f. Which process requires a smaller magnitude of the energy Q transferred thermally to the gas?
Relevant Equations
$$\Delta E=W+Q$$
$$PV=Nk_BT$$
$$Q=\tfrac{d}{2}Nk_BT \text{ (isochoric process)}$$
$$Q=NC_p\Delta T \text{ (isobaric process) }$$
Here is the figure:
1597791821634.png

The answer is $$Q_A<Q_B$$ which I can show by calculation using the above equations. What's confusing to me is I thought that the change in internal energy was a state function. Which would mean since the initial and final points are the same, $$\Delta E_A=\Delta E_B$$ or by the 1st law of thermodynamics $$W_A+Q_A=W_B+Q_B$$ Since W is the area under the curve (and positive in this case since the gas is being compressed), $$W_A<W_B$$ So the work done on the gas in process A is less than in process B, and the energy transferred thermally to the gas in process A is less than in process B. Which, since all values are positive, seems like it contradicts the original assumption that the change in internal energy was a state function, since it seems like the change in internal energy has to be less in process A. What am I missing here?
 
Physics news on Phys.org
msw1 said:
The answer is ##Q_A<Q_B## which I can show by calculation using the above equations.
Can you show that calculation? There is heat involved in both parts of both transitions.
 
mfb said:
Can you show that calculation? There is heat involved in both parts of both transitions.
Sure, energy transferred thermally in the isobaric processes is
$$Q=NC_p\Delta T$$
$$Q=N\left(\tfrac{d}{2}+1\right)k_b\Delta T$$
And ##\Delta T = \frac{P\Delta V}{Nk_B}## by the ideal gas law so
$$Q=P\Delta V\left(\tfrac{d}{2}+1\right)$$
And then for the isochoric processes
$$Q=\tfrac{d}{2}Nk_B\Delta T$$
And ##\Delta T = \frac{\Delta P V}{Nk_B}## so
$$Q = \tfrac{d}{2}(\Delta P)V$$
So the overall energy transferred thermally in each process is
$$P\Delta V\left(\tfrac{d}{2}+1\right)+\tfrac{d}{2}(\Delta P)V$$
Taking d to be 3 since this is a monatomic gas, the energy transferred thermally in process A is then
$$9680\cdot1.3(\tfrac{3}{2}+1)+\tfrac{3}{2}\cdot12720\cdot0.45=40046J$$
And then the energy transferred thermally in process B is
$$22400\cdot1.3(\tfrac{3}{2}+1)+\tfrac{3}{2}\cdot12720\cdot1.75=106190J$$
So ##Q_A<Q_B##, which my homework grader says is correct.
 
What is the sign of ##\Delta V##?
 
  • Like
Likes Chestermiller
mfb said:
What is the sign of ##\Delta V##?
Oh, that was it! So ##|Q_A|<|Q_B|## like the question asked, but ##Q_A>Q_B##, and so there is no contradiction. Thanks!
 
  • Like
Likes mfb and Chestermiller
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...
Back
Top