vanhees71 said:
Yes. The velocity is a vector. Under rotations the position-vector components ##\vec{x}=(x,y,z)^{\mathrm{T}}## transform with a matrix ##\hat{T} \in \mathrm{SO}(3)## and time doesn't change at all. Thus you have
$$t'=t, \quad \vec{x}'=\hat{T} \vec{x}.$$
Thus the velocity transforms like
$$\vec{v}'=\frac{\mathrm{d} \vec{x}'}{\mathrm{d} t'} = \frac{\mathrm{d}}{\mathrm{d} t} \hat{R} \vec{x}=\hat{R} \frac{\mathrm{d} \vec{x}}{\mathrm{d} t}=\hat{R} \vec{v},$$
i.e., the velocity transforms under the same rotation as the position vector.
Further, since ##\hat{T}^{-1}=\hat{T}^{\mathrm{T}}## (that's what's called an orthgonal matrix), you have
$$T'=\frac{m}{2} \vec{v}'^2=\frac{m}{2} (\hat{T} \vec{v})^2=\frac{m}{2} \vec{v}^2=T,$$
which means that the kinetic energy of the particle is a scalar (tensor of rank 0). Of course, I've used that (by definition!) the mass of the particle, ##m##, is a scalar too.
I probably have some conceptual problem.
Let’s restrict our discussion to non-relativistic physics and Cartesian coordinate (I mean coincidence of contra- an co- variant components, etc…).
I know that a tensor is something that guarantees the covariance of a law of physics when you switch between admissible frames of reference. To achieve this, physical quantities involved in the physics laws must transform according the well-known rule of transformation of the tensor components under change of coordinate (read transformation matrix in this case of Cartesian systems).
Let’s consider two frames of reference with the same orientation but in relative motion along one axis (Galilean transformation). These frames are both inertial, and then the physics law must transform covariantly going from one frame to the other. The transformation matrix in this case is the identity. This means that the law of transformation of tensor components (whatever the tensor rank be) is that each component is invariant going from one frame to the other.
In one frame, a point mass can look static, i.e. its velocity components are all 0. In the other, this point mass looks moving along the axis of relative motion between the frames, i.e. its velocity has at least one component different from 0. Then, the velocity is not a tensor of rank 1.
Similarly, the kinetic energy of this point mass is 0 in one frame, and different from 0 in the other. Then the kinetic energy is not a tensor of rank 0.
Following this interpretation, the position vector is not a tensor, but the displacement vector between two points is a tensor of rank 1…. The acceleration is a tensor of rank 1 (it can be demonstrated that its components remain the same going from one frame to the other).
For this reason
F =m v
cannot be a law of physics, because contains a quantity which is not a tensor, namely the velocity, while
F = ma on the contrary is a correct law of physics (contains only tensor).