dpopchev
- 25
- 0
Homework Statement
We have the Einstein tensor G_{αβ} = R_{αβ} - \frac{1}{2}g_{αβ}R
where R_{\alpha \beta}, R are the Ricci tensor and scalar.
Homework Equations
We want the metric to be small perturbation of the flat space, so g_{\alpha \beta} = \eta_{\alpha \beta} + h_{\alpha \beta} with h_{\alpha \beta} is a small.
By definition we use \eta to upper or down indexes.
So we can write R = R^\beta_\beta = \eta^{\alpha \beta} R_{\alpha \beta}
The Attempt at a Solution
Lets substitute in above G_{\alpha \beta} = R_{\alpha \beta} - \frac{1}{2} \eta_{\alpha \beta} R = R_{\alpha \beta} - \frac{1}{2} \eta_{\alpha \beta}\eta^{\alpha \beta} R_{\alpha \beta} = R_{\alpha \beta}( 1 - \frac{1}{2} \eta^{\alpha_\beta} ) = <br /> R_{\alpha \beta}( 1 - \frac{1}{2}tr(\eta) ) = <br /> R_{\alpha \beta}( 1 - \frac{2}{2} ) = R_{\alpha \beta}( 1 - 1 ) = 0
This cannot be... I seem not to see my mistake...