Momentum current is not the same thing as 4-current. What is typically intended when you just say "4-current" without further specification is the electromagnetic 4-current ##J^\mu = (\rho,\vec j)##, where ##\rho## is the charge density and ##\vec j## the (spatial) current density, which is a 4-vector.
The components of the stress energy tensor do not transform like the components of a 4-vector because they are the components of a second rank tensor. Of course, as pointed out in the previous post, each index by itself transforms in the appropriate manner and the stress energy tensor itself is an invariant object. However, your time direction is not invariant under Lorentz transformations and therefore (in general) ##T'^{0\nu} \neq \Lambda^\nu_{\phantom\nu\mu} T^{0\mu}##.