Is the magnetic field B→. a state function and exact differential?

johankep
Messages
4
Reaction score
2
Homework Statement
. a state function and exact differential?
Relevant Equations
state functions
is the magnetic field B→. a state function and exact differential?

I argued that it's a state function, what do you guys think
 
Last edited:
Physics news on Phys.org
johankep said:
Homework Statement:: . a state function and exact differential?
Relevant Equations:: state functions

is the magnetic field B→. a state function and exact differential?

I argued that it's a state function, what do you guys think
I'm not sure if it makes sense to distinguish between state functions and non-state functions outside the field of thermodynamics.
How did you argue that B is a state function.

However, E is an exact differential in electrostatics since it is the gradient of a scalar field.
B is not the gradient of a scalar field.
 
Philip Koeck said:
I'm not sure if it makes sense to distinguish between state functions and non-state functions outside the field of thermodynamics.
How did you argue that B is a state function.

However, E is an exact differential in electrostatics since it is the gradient of a scalar field.
B is not the gradient of a scalar field.

Thanks for the reply Philip
regarding your question, this is the context of B here
https://en.wikipedia.org/wiki/Magnetic_Thermodynamic_Systems

 
  • Like
Likes Philip Koeck
Philip Koeck said:
I'm not sure if it makes sense to distinguish between state functions and non-state functions outside the field of thermodynamics.
How did you argue that B is a state function.

However, E is an exact differential in electrostatics since it is the gradient of a scalar field.
B is not the gradient of a scalar field.
Sorry forget to say..my argument was that since B can be measured knowing its current value(state) only..then it's a state function but I'm not sure to be honest if my reasoning correct
 
johankep said:
Thanks for the reply Philip
regarding your question, this is the context of B here
https://en.wikipedia.org/wiki/Magnetic_Thermodynamic_Systems
Now I see why you ask. In a thermodynamic context I guess it can be important whether B is a state function or not.
I don't understand very much about this, I'm afraid, but I'm a bit surprised about the equations in the wikipedia article.
In the second equation p dV is not integrated, whereas the other 3 terms are. Probably just a typo.
What worries me more is the last term which contains both a ΔB and a dV in the integrand. Is that really correct? Do you have a derivation? Maybe it should say B rather than ΔB.
B is not an extensive quantity, so I wouldn't expect it to show up as a difference or differential in the fundamental equation.
Then the integration over V is also strange. Which V? V is one of the quantities that changes.
 
Philip Koeck said:
Now I see why you ask. In a thermodynamic context I guess it can be important whether B is a state function or not.
I don't understand very much about this, I'm afraid, but I'm a bit surprised about the equations in the wikipedia article.
In the second equation p dV is not integrated, whereas the other 3 terms are. Probably just a typo.
What worries me more is the last term which contains both a ΔB and a dV in the integrand. Is that really correct? Do you have a derivation? Maybe it should say B rather than ΔB.
B is not an extensive quantity, so I wouldn't expect it to show up as a difference or differential in the fundamental equation.
Then the integration over V is also strange. Which V? V is one of the quantities that changes.

I asked a professor his answer was "B and E are thermodynamic parameters, measurable macroscopic quantities associated to the system therefore they are state functions"... I don't think I fully understand his answer.. but yeah this is it
 
  • Like
Likes Philip Koeck
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top