Is the periodic function a vector space?

golmschenk
Messages
35
Reaction score
0

Homework Statement


Is the following a vector space:
The set of all periodic functions of period 1? ( i.e. f(x+1)=f(x) )

Homework Equations


If v1 and v2 are in V then v1 + v2 is in V

If v1 is in V then c*v1 is in V where c is a scalar

The Attempt at a Solution


I'm thinking no because a function like:
f(x) = 2*x mod 2
If you multiply by 1/2 you have
f(x) = x mod 2

What I'm wondering is if the mod 2 is effected by the scalar multiplication of 1/2. Is it or is this not a subspace? Thanks for your time.
 
Physics news on Phys.org
golmschenk said:
f(x) = 2*x mod 2
If you multiply by 1/2 you have
f(x) = x mod 2
Let's check this using x=17:
\frac{(2\cdot5)\mod 2}{2} = \frac{\mathop{\mathrm{remainder}}(10,2)}{2} = \frac{0}{2} = 0,​
while
5\mod 2 = \mathop{\mathrm{remainder}}(5,2) = 1.​
Evidently, the two expressions are not the same. Can you see why this is?
 
Right. It's a scalar multiple of the entire function. Got it. Thanks!
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top