Cirrus79
- 2
- 0
Hello,
I don't understand two steps in solution to the problem:
I. Homework Statement
Show that QED action is invariant under gauge transformation.
II. Relevant equations
QED action:
S= \int{d^{4} x \left[\overline{\Psi}\left(i\gamma^{\mu} D_{\mu} -m \right)\Psi -\frac{1}{4}F_{\mu \nu}F^{\mu \nu}\right]}
Gauge transformation:
\Psi\rightarrow e^{-iQ\chi}\Psi
A_{\mu}\rightarrow A_{\mu}+\frac{1}{e}\partial_{\mu}\chi
III. The attempt at a solution
1. First I show that D_{\mu}\Psi\rightarrow e^{-iQ\chi}D_{\mu}\Psi
D_{\mu}\Psi=(\partial_{\mu}+ieQA_{\mu})\Psi \rightarrow<br /> \left[\partial_{\mu}+ieQ\left(A_{\mu}+\frac{1}{e}\partial_{\mu}\chi\right)\right] <br /> e^{-iQ\chi}\Psi =
=\left(\partial_{\mu}+ieQA_{\mu}+iQ\partial_{\mu}\chi\right) <br /> e^{-iQ\chi}\Psi=
=e^{-iQ\chi}\left(-iQ\partial_{\mu}\chi+ieQA_{\mu}+iQ\partial_{\mu}\chi+\partial_{\mu}\right) <br /> \Psi=
=e^{-iQ\chi}\left(\partial_{\mu}+ieQA_{\mu}\right) <br /> \Psi=e^{-iQ\chi}D_{\mu}\Psi
The problem is in the third line. Where does \partial_{\mu} come from?
I get:
(iQ\partial_{\mu}\chi) <br /> e^{-iQ\chi}\Psi=\left(e^{-iQ\chi}iQ\partial_{\mu}\chi -e^{-iQ\chi}i^{2} Q^{2}\chi\partial_{\mu}\chi\right)\Psi
What am I doing wrong?
2. Then I show that F^{\mu \nu}\rightarrow F^{\mu \nu} and \overline{\Psi}\rightarrow e^{iQ\chi}\overline{\Psi}
3. And finally:
\overline{\Psi}(i\gamma^{\mu} D_{\mu} -m)\Psi\rightarrow e^{iQ\chi}\overline{\Psi}(i\gamma^{\mu}e^{-iQ\chi}D_{\mu}-m)e^{-iQ\chi}\Psi=
=e^{iQ\chi}\overline{\Psi}e^{-iQ\chi}(i\gamma^{\mu} D_{\mu} -m)\Psi=\overline{\Psi}(i\gamma^{\mu} D_{\mu} -m)\Psi
Here is the second problem. I get:
\overline{\Psi}(i\gamma^{\mu} D_{\mu} -m)\Psi\rightarrow e^{iQ\chi}\overline{\Psi}(i\gamma^{\mu}e^{-iQ\chi}D_{\mu}-m)e^{-iQ\chi}\Psi=
=e^{iQ\chi}\overline{\Psi}(i\gamma^{\mu}e^{-iQ\chi} D_{\mu}e^{-iQ\chi} -e^{-iQ\chi}m)\Psi =e^{iQ\chi}\overline{\Psi}e^{-iQ\chi}(i\gamma^{\mu} D_{\mu}e^{-iQ\chi} -m)\Psi
I can't figure out what happens here.
I will be very grateful for your help.
I don't understand two steps in solution to the problem:
I. Homework Statement
Show that QED action is invariant under gauge transformation.
II. Relevant equations
QED action:
S= \int{d^{4} x \left[\overline{\Psi}\left(i\gamma^{\mu} D_{\mu} -m \right)\Psi -\frac{1}{4}F_{\mu \nu}F^{\mu \nu}\right]}
Gauge transformation:
\Psi\rightarrow e^{-iQ\chi}\Psi
A_{\mu}\rightarrow A_{\mu}+\frac{1}{e}\partial_{\mu}\chi
III. The attempt at a solution
1. First I show that D_{\mu}\Psi\rightarrow e^{-iQ\chi}D_{\mu}\Psi
D_{\mu}\Psi=(\partial_{\mu}+ieQA_{\mu})\Psi \rightarrow<br /> \left[\partial_{\mu}+ieQ\left(A_{\mu}+\frac{1}{e}\partial_{\mu}\chi\right)\right] <br /> e^{-iQ\chi}\Psi =
=\left(\partial_{\mu}+ieQA_{\mu}+iQ\partial_{\mu}\chi\right) <br /> e^{-iQ\chi}\Psi=
=e^{-iQ\chi}\left(-iQ\partial_{\mu}\chi+ieQA_{\mu}+iQ\partial_{\mu}\chi+\partial_{\mu}\right) <br /> \Psi=
=e^{-iQ\chi}\left(\partial_{\mu}+ieQA_{\mu}\right) <br /> \Psi=e^{-iQ\chi}D_{\mu}\Psi
The problem is in the third line. Where does \partial_{\mu} come from?
I get:
(iQ\partial_{\mu}\chi) <br /> e^{-iQ\chi}\Psi=\left(e^{-iQ\chi}iQ\partial_{\mu}\chi -e^{-iQ\chi}i^{2} Q^{2}\chi\partial_{\mu}\chi\right)\Psi
What am I doing wrong?
2. Then I show that F^{\mu \nu}\rightarrow F^{\mu \nu} and \overline{\Psi}\rightarrow e^{iQ\chi}\overline{\Psi}
3. And finally:
\overline{\Psi}(i\gamma^{\mu} D_{\mu} -m)\Psi\rightarrow e^{iQ\chi}\overline{\Psi}(i\gamma^{\mu}e^{-iQ\chi}D_{\mu}-m)e^{-iQ\chi}\Psi=
=e^{iQ\chi}\overline{\Psi}e^{-iQ\chi}(i\gamma^{\mu} D_{\mu} -m)\Psi=\overline{\Psi}(i\gamma^{\mu} D_{\mu} -m)\Psi
Here is the second problem. I get:
\overline{\Psi}(i\gamma^{\mu} D_{\mu} -m)\Psi\rightarrow e^{iQ\chi}\overline{\Psi}(i\gamma^{\mu}e^{-iQ\chi}D_{\mu}-m)e^{-iQ\chi}\Psi=
=e^{iQ\chi}\overline{\Psi}(i\gamma^{\mu}e^{-iQ\chi} D_{\mu}e^{-iQ\chi} -e^{-iQ\chi}m)\Psi =e^{iQ\chi}\overline{\Psi}e^{-iQ\chi}(i\gamma^{\mu} D_{\mu}e^{-iQ\chi} -m)\Psi
I can't figure out what happens here.
I will be very grateful for your help.