Is the Renormalization Group Equation for the n-Point Green's Function Correct?

  • Thread starter Thread starter CAF123
  • Start date Start date
  • Tags Tags
    Group
CAF123
Gold Member
Messages
2,918
Reaction score
87

Homework Statement


The renormalization group equations for the n-point Green’s function ##\Gamma(n) = \langle \psi_{x_1} \dots \psi_{x_n}\rangle ## in a four-dimensional massless field theory is $$\mu \frac{d}{d \mu} \tilde{\Gamma}(n) (g) = 0$$ where the coupling g is defined at mass scale ##\mu##.

Show that this is equivalent to $$ (\beta \frac{\partial}{\partial g} + n )\tilde{\Gamma}(n) = 0, $$ where ##\beta(g) = \mu \frac{d g}{d \mu}. ##The field ##\psi## has mass dimension one and the Green’s function is a homogeneous function of degree n in the field.

Homework Equations


[/B]
function of homogenous degree n is one in which the exponents of each term all add up to n.

Renormalisation of fields

The Attempt at a Solution


In renormalisation, ##\psi \rightarrow Z_{\psi} \psi## and given that the Green's function is a homogenous function of degree n, in the renormalised Green's function, we now have a factor of ##(Z_{\psi})^n## in each term. So, $$\frac{d}{d \mu} \tilde \Gamma = \frac{\partial \tilde \Gamma}{\partial \mu} + \frac{\partial \tilde \Gamma}{\partial Z_{\psi}} \frac{\partial Z_{\psi}}{\partial \mu}$$ I would say that $$\frac{\partial \tilde \Gamma}{\partial Z_{\psi}} = n (Z_{\psi})^{n-1}\tilde \Gamma$$ but this does not seem to give me correct result.

Did I assume something incorrect? Thanks!
 
Physics news on Phys.org
CAF123 said:

Homework Statement


The renormalization group equations for the n-point Green’s function ##\Gamma(n) = \langle \psi_{x_1} \dots \psi_{x_n}\rangle ## in a four-dimensional massless field theory is $$\mu \frac{d}{d \mu} \tilde{\Gamma}(n) (g) = 0$$ where the coupling g is defined at mass scale ##\mu##.

Show that this is equivalent to $$ (\beta \frac{\partial}{\partial g} + n )\tilde{\Gamma}(n) = 0, $$

You are missing a ##\gamma## in that equation, next to the factor of n , did you realize this?
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top