Is There a Symmetric Form of the Dirac Lagrangian?

ChrisVer
Science Advisor
Messages
3,372
Reaction score
465
Is there any way to write the Dirac lagrangian to have symmetric derivatives (acting on both sides)? Of course someone can do that by trying to make the Lagrangian completely hermitian by adding the hermitian conjugate, and he'll get the same equations of motion (a 1/2 must exist in that case)...However same equations of motion, imply that there should be a connection between the two Lagrangians via a 4divergence, right? Unfortunately I cannot see what that could be.
L_{D}= \bar{\psi} (i γ^{\mu}∂_{\mu}-m) \psi
In particular choosing
L_{D}= \bar{\psi} (i γ^{\mu}∂_{\mu}-m) \psi + ∂_{\mu}K^{\mu}
seems to bring some result if I choose K^{\mu}=i\bar{\psi}\gamma^{\mu}\psi
but the initial lagrangian seems to get doubled...
 
Physics news on Phys.org
L_{D}=\frac{1}{2} \bar{\psi} i γ^{\mu}∂_{\mu} \psi + \frac{1}{2} \bar{\psi} i γ^{\mu}∂_{\mu} \psi -m \bar{\psi}\psi

L_{D}=\frac{1}{2} \bar{\psi} i γ^{\mu}∂_{\mu} \psi + \frac{1}{2} i ∂_{\mu}(\bar{\psi}γ^{\mu}\psi) - \frac{1}{2}i (∂_{\mu}\bar{\psi})\gamma^{\mu}\psi -m \bar{\psi}\psi

L_{D}=\frac{1}{2} \bar{\psi} (i γ^{\mu}[∂_{\mu}^{→}-∂_{\mu}^{←}] -2m) \psi + \frac{1}{2} i ∂_{\mu}(\bar{\psi}γ^{\mu}\psi)

Should the - exist?
 
Last edited:
Yes, your last expression is right.
 
Toponium is a hadron which is the bound state of a valance top quark and a valance antitop quark. Oversimplified presentations often state that top quarks don't form hadrons, because they decay to bottom quarks extremely rapidly after they are created, leaving no time to form a hadron. And, the vast majority of the time, this is true. But, the lifetime of a top quark is only an average lifetime. Sometimes it decays faster and sometimes it decays slower. In the highly improbable case that...
I'm following this paper by Kitaev on SL(2,R) representations and I'm having a problem in the normalization of the continuous eigenfunctions (eqs. (67)-(70)), which satisfy \langle f_s | f_{s'} \rangle = \int_{0}^{1} \frac{2}{(1-u)^2} f_s(u)^* f_{s'}(u) \, du. \tag{67} The singular contribution of the integral arises at the endpoint u=1 of the integral, and in the limit u \to 1, the function f_s(u) takes on the form f_s(u) \approx a_s (1-u)^{1/2 + i s} + a_s^* (1-u)^{1/2 - i s}. \tag{70}...
Back
Top