Is There a Way to Integrate ∫xarctanx dx Without Going Back into Arctanx?

  • Thread starter Thread starter Pyroadept
  • Start date Start date
  • Tags Tags
    Integration
Pyroadept
Messages
82
Reaction score
0

Homework Statement


∫xarctanx dx


Homework Equations


d/dx (arctanx) = 1/(1 + x^2)
∫1/(1 + x^2) = arctanx
∫u dv = uv - ∫v du

The Attempt at a Solution


Hi everyone,

Here's what I've done so far:

Use integration by parts:
u = arctanx
du = 1/(1 + x^2) dx

dv = x dx
v = (1/2)x^2

∫u dv = uv - ∫v du
= arctanx(1/2)x^2 - (1/2)∫x^2/(1 + x^2) dx

But how do you integrate this new integral without going back into arctanx, in which case you'll be left with zero?

Thanks for any help
 
Physics news on Phys.org
Long division. \frac{x^2}{1+x^2}=1-\frac{1}{1+x^2}
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top