Jhenrique
- 676
- 4
The line integral can be expressed, at least, in this three different ways: \int \vec{f} \cdot \hat{t} ds = \int \vec{f} \cdot d\vec{s} = \int \vec{f} \cdot d\vec{r} The surface integral too (except by least expression above): \iint \vec{f} \cdot \hat{n} d^2S = \iint \vec{f} \cdot d^2\vec{S} My ask is: exist some equivalent/analogous expression to ∫ f·dr for surface integral? In other words, is possible to write the surface integral in terms of the position vector r? Maybe: ##\iint \vec{f} \cdot d^2\vec{r}## ?