Is this a doppler effect problem?

AI Thread Summary
The discussion revolves around a scenario involving the Doppler effect, where a slithering sound is heard at a frequency of 130+17 Hz, while the known frequency is 130 Hz. Participants question whether this situation qualifies as a Doppler effect problem due to the absence of a wavelength. The relationship between wavelength, frequency, and velocity is highlighted, specifically the formula v = λf, which can be used to determine the wavelength. The conversation emphasizes understanding how to apply this formula to solve for the speed of the slithering object. Overall, the thread seeks clarity on solving the problem using the principles of wave mechanics.
cheez
Messages
26
Reaction score
0
You hear something slitering toward you in the dark. You know from past experience that somethings slither with a frewuency of 130 Hz. If you hear a frequency of 130+17 Hz, how fast is the litherer slithering toward you (in m/s)? The speed of sound is 300 m/s


Is is a doppler effect problem? But there is no wavelength given in here? Can anybody tell me how to do it?
 
Physics news on Phys.org
Use the relation between wavelength, frequency and velocity to find the wavelength: v=\lambda f.
It's very easy to remember this formula, since f=1/T with T the period. The wave will travel 1 wavelength in 1 period, so v=wavelength/period.
 
Thread 'Variable mass system : water sprayed into a moving container'
Starting with the mass considerations #m(t)# is mass of water #M_{c}# mass of container and #M(t)# mass of total system $$M(t) = M_{C} + m(t)$$ $$\Rightarrow \frac{dM(t)}{dt} = \frac{dm(t)}{dt}$$ $$P_i = Mv + u \, dm$$ $$P_f = (M + dm)(v + dv)$$ $$\Delta P = M \, dv + (v - u) \, dm$$ $$F = \frac{dP}{dt} = M \frac{dv}{dt} + (v - u) \frac{dm}{dt}$$ $$F = u \frac{dm}{dt} = \rho A u^2$$ from conservation of momentum , the cannon recoils with the same force which it applies. $$\quad \frac{dm}{dt}...

Similar threads

Replies
3
Views
2K
Replies
1
Views
2K
Replies
5
Views
2K
Replies
7
Views
3K
Replies
4
Views
2K
Replies
5
Views
1K
Replies
3
Views
2K
Back
Top