Is This Quadratic Form Positive Definite or Indefinite?

Gauss M.D.
Messages
151
Reaction score
1
Getting ready for linear algebra exam. One question that I got right but not exactly sure why is this:

---
Consider the quadratic form

Q(x,y,z) = 3x^2 + 3z^2 + 4xy + 4xy + 8xz

a) Decide if Q is positive definite, indefinite, etc.

b) What point on the surface Q = 1 lies closest to the origin and what is that distance?
---

I computed the eigenvalues and got -1, -1 and 8, i.e. indefinite. But when just completing the square, there is only two positive terms: x(3x + 4y + 8z) + z(3z + 4y). How does this mesh with Sylvesters law of inertia?

Also, this form has got to be some kind of hyperboloid or something. So how can I know if the point associated with 1/sqrt(8) is actually on the surface? Since we're dealing with hyperbolas and not ellipses, that isn't always the case, is it?
 
Physics news on Phys.org
Gauss M.D. said:
Getting ready for linear algebra exam. One question that I got right but not exactly sure why is this:

---
Consider the quadratic form

Q(x,y,z) = 3x^2 + 3z^2 + 4xy + 4xy + 8xz

a) Decide if Q is positive definite, indefinite, etc.

b) What point on the surface Q = 1 lies closest to the origin and what is that distance?
---

I computed the eigenvalues and got -1, -1 and 8, i.e. indefinite. But when just completing the square, there is only two positive terms: x(3x + 4y + 8z) + z(3z + 4y). How does this mesh with Sylvesters law of inertia?

That's not the result of completing the square. If you complete the squares in x, y and z in that order you should get
3\left(x + \frac23y + \frac43z\right)^2 - \frac43\left(y + \frac12z\right)^2 - 2z^2
 
pasmith said:
That's not the result of completing the square. If you complete the squares in x, y and z in that order you should get
3\left(x + \frac23y + \frac43z\right)^2 - \frac43\left(y + \frac12z\right)^2 - 2z^2

But I thought the law indicated that no matter how you complete the square, the number of positive and negative terms will always be the same?
 
Gauss M.D. said:
But I thought the law indicated that no matter how you complete the square, the number of positive and negative terms will always be the same?

Yes, but rearranging Q(x,y) = x(3x + 4y + 8z) + z(3z + 4y) is not completing the square.
 
out of curiosity what level of linear algebra is this? Because I just finished my course and we never covered this haha. Though we did talk about eigenvectors
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
Back
Top