Is Vm a reliable measure of magnetic fields in the presence of current?

sachi
Messages
63
Reaction score
1
I'm confused about the status of Vm. We are asked under what circumstances we can write B = - Mu0*grad(Vm).
I think the idea is that when there is no current density (displacement or conduction) we can write curl(B) = 0. Therefore we can write B as a grad of a scalar potential, as curl grad = 0 always. The only problem is that even if curl B isn't zero, all this means is that B is not a conservative field, so that Vm isn't path independent i.e it is not well defined. this just means that if we find Vm using different paths we get different values of Vm which differ by a constant, therefore Vm includes an arbitrary constant. the only problem is that this constant disappears on differentiation anyway, so surely we can still write B = -Mu0*grad (Vm) even when there is a current density? thanks for your help.
 
Physics news on Phys.org
The point is that if V_m is a well behaved function then \nabla \times (\nabla V_m) = 0 so that the magnetic scalar potential cannot describe a magnetic field in regions where current is nonzero.
 
Last edited:
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top