Jacobian Calculation for Transformation (x, y) to (u, v)

  • Thread starter Thread starter franky2727
  • Start date Start date
  • Tags Tags
    Jacobian
franky2727
Messages
131
Reaction score
0
calculate the jacobian d(x,y)/d(u,v) of the transformation u=x2+y2
v=x+y

for this do i first have to calculate the jacobian d(u,v)/d(x,y) then do 1over the answer? because i would assume the matrix to be det|{(dudx,dudy)(dvdx,dvdy)} but with (u,v) on top i cannot get this
 
Physics news on Phys.org
franky2727 said:
calculate the jacobian d(x,y)/d(u,v) of the transformation u=x2+y2
v=x+y

for this do i first have to calculate the jacobian d(u,v)/d(x,y) then do 1over the answer? because i would assume the matrix to be det|{(dudx,dudy)(dvdx,dvdy)} but with (u,v) on top i cannot get this

You can do any of three things:
1) Solve for x and y as functions of u and v.
2) Use implicit differentiation to find \partial x/\partial u, \partial y/\partial u, \partial x/\partial v, and \partial y/\partial v.
3) Take the reciprocal of d(u,v)/d(x,y).
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top