mheslep said:
Did they have sufficient control to do so at that point, post tsunami but pre H2 explosion?
Looking at the timelines, we get this partial information:
15:30 IC trains A and B manually secured, loss of all cooling to Unit 1
18:18 to 18:25 partial operation of train A
18:45 earliest start of Unit 1 core damage per TEPCO November 2011 analysis
March 11 Unit 1 and 2 MCR instrumentation
“late afternoon” battery collection starts
20:00 2 x 12V and 4 x 6V batteries delivered
20:49 temporary AC lighting available
21:19 24V connection to reactor water level gage of unit 1 connected
March 13 Unit 3
06:00 battery collection starts
07:44 ten 12V batteries delivered to MCR, series connection starts
09:08 120V connection to SRV established
It should be noted that there was no initial rush to provide instrumentation power, because after initial loss of DC power from unit batteries, that power returned for a while and only then faded away for good. Also, time was lost in looking over paper wiring diagrams with flashlights in the MCR, when this could have been done in the ERC that had AC backup power and two working phone lines to each MCR to relay instructions with.
In the unit Unit 3 case they collected and connected batteries for the actual case of using the SRV remotely from the MCR, but here the conditions in Unit 3 & 4 MCR were much worse than earlier in Unit 1 & 2 MCR, because this was after the H2 explosion in Unit 3 and everybody had to wear full suits and masks, including rubber gloves for radiation protection. Also at that point there were only flashlights available. Also the battery collection efforts were significantly hampered by radiation and additional debris outside.
I think it would not be unreasonable that the battery collection time for Unit 1 SRV operation could have been reduced to less than an hour in March 11 late afternoon with the conditions then prevailing and also if decision had been made to utilise employee's personal vehicles instead of TEPCO and contractor vehicles, access to which apparently was much delayed.
If this battery collection time had been OTOH used by another team to prepare the connection supplies, tools and wiring instructions from the ERC where PCs and electronic records with better search capabilities were available, I believe it should have been possible to bring the connection time down to less than one hour as well. That would have still left about an hour to come up and decide to implement this plan, which should have been enough even with time to evaluate IC effectiveness before committing.
Obviously, to be really effective it would also have required lining up the FP system injection path and positioning a fire engine for it. This was actually only attempted starting on March 12th 02:00 and the first attempt failed to locate the injection port, because the plan was to just drive around the building and search for it with the directable searchlights of the truck. They were able to locate the correct water connection only after going back to the ERC and getting a person on board who actually knew where it was. Because of this little snafu, it took until 04:00 to do the connection. There was also no other preparatory work for this until after midnight of March 12th, except breaking one electrically locked gate and some road repair work that was being carried out for other purposes. When the water injection to Unit 1 finally started, radiation levels were already high around Unit 1 buildings and required periodic evacuations of contractor personnel.
The actual mission time from when correct personnel was onboard, was from 03:00 to 04:00, so one hour to position the first fire engine and connect the hoses.
It should also be noted that no priority was given to the fire engine plan until the DDFP and plant fire water system plan was tried for many hours and failed. Its failure could have been expected for at least two reasons by the Japanese reports. First is that the DDFP was at a lower level than the external water connection and had less exhaust pressure than the fire engines, so even if it did get water from the system, it would require very low reactor pressure to work. Apparently none of the units achieved low enough RPV pressure for it to work for any of them. Another problem was that the fire water system was damaged plant wide due to the earthquake and tsunami and there was never any assurance that more water than what was in some length of upstream pipes would ever reach the DDFP. The plant fire department had closed valves from the main filtered water tank due to extensive leaks in many fire water lines.
However, the valve line up work for the FP injection from either the DDFP or the fire engine connection via MUWC and CS took from 18:30 to 20:50. Work was hampered by the same team having several tasks, poor instructions and wrong keys, having to return to the MRC several times and then back to the RB to continue the work. With even a little better planning or execution this task might have been condensed to two hours as well.
I have not seen a clear accounting of personnel in any of the reports, but it appears to me like additional manpower resources were only sent to the main control rooms (in addition to about 12 per unit in the regular shift) for particular recovery work tasks from the ERC and everything else had to be done with the regular shift that also had to have people manually record unit data and communicate with the ERC. That could not have left many 2 man teams to simultaneously do several control or recon missions from the MRC to the RB or TB. I would have expected much faster actions with more people available, essentially standing by at the MRC and waiting for new tasks that might arise either locally or from instructions from the ERC, without the ERC having to gather and then send the necessary extra personnel from the ERC to the unit needing it.