Johnson noise power distribution?

AI Thread Summary
The discussion centers on the derivation of the power distribution formula for thermal noise in an LRC circuit, specifically P(w)dw=(2/pi)ktdw, as presented in Feynman's lectures. The original poster expresses confusion over the formula's origin and its dimensional analysis, questioning its validity. They also explore the relationship between thermal noise and black body radiation, noting that only resistors generate thermal noise, while inductors and capacitors influence bandwidth. The poster eventually finds clarity through an explanation involving resistors in series and standing voltage waves. The conversation emphasizes the importance of understanding the role of resistors in thermal noise generation within circuits.
Fr33Fa11
Messages
13
Reaction score
0
I've been reading through the Feynman lectures (almost done with Volume 1), and I have been trying to prove everything to myself. I have a bit of a problem now though, in Chapter 41 on Brownian motion, Feynman shows what the voltage in an LRC circuit is due to thermal noise, and then says that the power distribution (with respect to angular velocity) is the following:
P(w)dw=(2/pi)ktdw
Now I have two problems. First, I do not understand where this comes from. At that point he says merely that it will be proven later, and the later proof is unhelpful and vague. The second problem is that the above formula does not check out with dimensional analysis. Power is in terms of J/s, kt is in terms of J, dw is /s, and cancels on both sides. Leaving
J/s=J
Is it wrong or am I missing something?
The later explanation that is given is that the noise generator in a circuit with resonance (adjustable) can be described as the signal received from an antenna due to thermal radiation emitted from the surrounding environment. This he shows (and I follow the explanation for this part) to be proportional to I(w)=w^2*(kt)/(pi^2c^2), and the correction for high temperature or low frequency is also shown, where I is the intensity of the radiation. It seems to me that Power=Area*Intensity, and so it would depend on the size of the antenna. Can anyone explain this?
 
Physics news on Phys.org
Ok, I think I understand it. I found an explanation using two resistors in series and standing voltage waves. What I don't understand now is his derivation of P from the spectral distribution for a black body radiator. As far as I understand it, he says this:
1. The black body radiator can be considered to be an individual atom, containing an electron that is allowed to vibrate as a harmonic oscillator. This atom must gain and lose energy at the same rate in order for it to be at thermal equilibrium in a box full of gas.
2. The equation for the root mean square voltage in an LRC circuit is w^2*LkT
Both of those statements, as well as the subsequent derivation for a black body radiator, I agree with. The problem is how the radiator relates to the thermal noise.
 
Fr33Fa11 said:
Ok, I think I understand it. I found an explanation using two resistors in series and standing voltage waves. What I don't understand now is his derivation of P from the spectral distribution for a black body radiator. As far as I understand it, he says this:
1. The black body radiator can be considered to be an individual atom, containing an electron that is allowed to vibrate as a harmonic oscillator. This atom must gain and lose energy at the same rate in order for it to be at thermal equilibrium in a box full of gas.
2. The equation for the root mean square voltage in an LRC circuit is w^2*LkTBoth of those statements, as well as the subsequent derivation for a black body radiator, I agree with. The problem is how the radiator relates to the thermal noise.
Neither inductors nor capacitors can be sources of thermal noise. Only resistors can be the source of noise, but inductances and capacitors can define bandwidth. So it is better to write the noise voltage with an "R" in it.
 
Thread 'Is 'Velocity of Transport' a Recognized Term in English Mechanics Literature?'
Here are two fragments from Banach's monograph in Mechanics I have never seen the term <<velocity of transport>> in English texts. Actually I have never seen this term being named somehow in English. This term has a name in Russian books. I looked through the original Banach's text in Polish and there is a Polish name for this term. It is a little bit surprising that the Polish name differs from the Russian one and also differs from this English translation. My question is: Is there...
This has been discussed many times on PF, and will likely come up again, so the video might come handy. Previous threads: https://www.physicsforums.com/threads/is-a-treadmill-incline-just-a-marketing-gimmick.937725/ https://www.physicsforums.com/threads/work-done-running-on-an-inclined-treadmill.927825/ https://www.physicsforums.com/threads/how-do-we-calculate-the-energy-we-used-to-do-something.1052162/
Hi there, im studying nanoscience at the university in Basel. Today I looked at the topic of intertial and non-inertial reference frames and the existence of fictitious forces. I understand that you call forces real in physics if they appear in interplay. Meaning that a force is real when there is the "actio" partner to the "reactio" partner. If this condition is not satisfied the force is not real. I also understand that if you specifically look at non-inertial reference frames you can...

Similar threads

Replies
4
Views
5K
Replies
1
Views
2K
Replies
5
Views
1K
Replies
1
Views
2K
Replies
1
Views
2K
Replies
2
Views
1K
Replies
8
Views
3K
Back
Top