Ket Notation - Effects of the Projection Operator

Questioneer
Messages
5
Reaction score
0
Ket Notation -- Effects of the Projection Operator

Homework Statement


From Sakurai's Modern Quantum Mechanics (Revised Edition), it is just deriving equation 1.3.12.


Homework Equations


\begin{eqnarray*}\langle \alpha |\cdot (\sum_{a'}^N |a'\rangle \langle a'|) \cdot|\alpha \rangle \end{eqnarray*}

The Attempt at a Solution


The summation can be moved to the left, so everything is being summed from a' to N, but does an alpha bra inner product with a' (or <α|a'>) does the sum of this from all a' to N equal Ʃ<a'|α>? maybe this is simple and I just can't see it?
 
Physics news on Phys.org


Check (1.2.12), which is a fundamental property of the inner product. That property holds even when the bras and kets correspond to different bases.
 


fzero said:
Check (1.2.12), which is a fundamental property of the inner product. That property holds even when the bras and kets correspond to different bases.

So, is it in this particular case that they are equal because we are considering the eigenkets of A, a hermitian operator? Because these are the eigenkets of A, does that mean that all operators on it are real? Even though it is the operator <α| acting on it and not A?
 


Questioneer said:
So, is it in this particular case that they are equal because we are considering the eigenkets of A, a hermitian operator? Because these are the eigenkets of A, does that mean that all operators on it are real? Even though it is the operator <α| acting on it and not A?

There's no assumption here that \langle \alpha | a&#039;\rangle is real, just that \langle \alpha | a&#039;\rangle = \langle a&#039;| \alpha\rangle^*. That is why the absolute value appears in the formula.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top