Kinetic Energy of Charged Particle

AI Thread Summary
The discussion focuses on calculating the kinetic energy of particle B, which has a charge of 5Q, when two charged particles are separated by a distance of 2.9976 m. The potential energy was calculated at two distances, yielding initial and final values of 49.0683 J and 16.3299 J, respectively. Using the conservation of energy principle, the total kinetic energy of the system was determined to be 32.7384 J. It was concluded that the kinetic energy of particle B is simply half of the total kinetic energy of the system. The problem was ultimately resolved by recognizing the relationship between the kinetic energies of the two particles.
soccerj17
Messages
15
Reaction score
0
[SOLVED] Kinetic Energy of Charged Particle

Homework Statement


Particles A (of mass m and charge Q) and B (of m and charge 5Q) are released from rest with the distance between them equal to 0.9976 m. If Q=33e-6 C, what is the kinetic energy of particle B at the instant when the particles are 2.9976 m apart?


Homework Equations


U=kq1q2/r
K=(mv^2)/2
ΔU+ΔK=0
F=ma

The Attempt at a Solution


I solved for the potential energy at both distances using U=kq1q2/r to find Ui=49.0683 J and Uf=16.3299 J. Then I used conservation of energy to find K so K=Ui-Uf and got K to be 32.7384 J. But I'm not sure how to get just the kinetic energy of particle B. I tried to sum the forces and use Newton's third law to find acceleration to see if that would help but I don't know how to find it without knowing the mass. I'm not sure if maybe I have to do a ratio to find the energy? I don't know what to do.
 
Physics news on Phys.org
nevermind, i figured out its just half of the system kinetic energy
 
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Back
Top