Kinetic friction of a wood block

In summary, the wood block is launched up an inclined ramp and has an initial speed of 14 m/s. It reaches a height of -7.686 m above its starting point and slides back down to its starting point at a speed of 2.73 m/s.
  • #1
spin360
13
0
So the problem states:

A 1.4 kg wood block is launched up a wooden ramp that is inclined at a 22 deg angle. The block's initial speed is 14 m/s. Use Uk = 0.20 for the coefficient of kinetic friction for wood on wood.

U = mu...

(a) What vertical height does the block reach above its starting point?

(b) What speed does it have when it slides back down to its starting point?

Okay so this is how I started it...

I drew a force diagram of the object on an inclined ramp at 22 deg. Set the x-axis parallel with the object.. so basically at the same angle. 3 forces.. normal, weight, and kinetic friction.

E = summation
M = mass
A = accel
N = normal
Mg = mass * gravity
fk = kinetic friction

E(Fy) = MAy = 0
N - Mg*cos(22) = 0
N = 12.73

E(Fx) = MAx
-fk - Mg*sin(22) = MAx
-Uk*N - Mg*sin(22) = MAx
-0.20*12.73 - 5.14 = MAx
Ax = -7.686 m/s^2

Vf = Vi + a*t
t = 1.95s

Plug that into the x kinematic equation...
xf = xi + vi*t + (1/2)*a*t^2
= 0 + 15*sin(22)*1.95 + (1/2)*(-7.68)(1.95^2)
= 12.507 m

The answer is wrong.. if someone could disect my work and figure out what I'm doing wrong that'd be awesome, thanks!
 
Physics news on Phys.org
  • #2
spin360 said:
So the problem states:

A 1.4 kg wood block is launched up a wooden ramp that is inclined at a 22 deg angle. The block's initial speed is 14 m/s. Use Uk = 0.20 for the coefficient of kinetic friction for wood on wood.

U = mu...

(a) What vertical height does the block reach above its starting point?

(b) What speed does it have when it slides back down to its starting point?

Okay so this is how I started it...

I drew a force diagram of the object on an inclined ramp at 22 deg. Set the x-axis parallel with the object.. so basically at the same angle. 3 forces.. normal, weight, and kinetic friction.

E = summation
M = mass
A = accel
N = normal
Mg = mass * gravity
fk = kinetic friction

E(Fy) = MAy = 0
N - Mg*cos(22) = 0
N = 12.73

E(Fx) = MAx
-fk - Mg*sin(22) = MAx
-Uk*N - Mg*sin(22) = MAx
-0.20*12.73 - 5.14 = MAx
Ax = -7.686 m/s^2

Vf = Vi + a*t
t = 1.95s

Plug that into the x kinematic equation...
xf = xi + vi*t + (1/2)*a*t^2
= 0 + 15*sin(22)*1.95 + (1/2)*(-7.68)(1.95^2)
= 12.507 m

The answer is wrong.. if someone could disect my work and figure out what I'm doing wrong that'd be awesome, thanks!

You didn't actually divide by the M in the final step to get your acceleration.

Can you elaborate on how you found t? Using your value for a, I don't get the same answer that you did. Maybe you made a typo?
 
Last edited:
  • #3
In addition to what hage567 points out:
spin360 said:
Plug that into the x kinematic equation...
xf = xi + vi*t + (1/2)*a*t^2
= 0 + 15*sin(22)*1.95 + (1/2)*(-7.68)(1.95^2)
= 12.507 m
Where do the 15 and the sin(22) come from? The initial speed is 14 m/s parallel to the incline. Once you find the distance up the incline using this formula, you'll have to convert it to height.
 
  • #4
Plug that into the x kinematic equation...
xf = xi + vi*t + (1/2)*a*t^2
= 0 + 15*sin(22)*1.95 + (1/2)*(-7.68)(1.95^2)
= 12.507 m

Don't forget that the kinematic equations will give you the distance ALONG the incline, not the height that the block was displaced in the vertical direction.

I'm not understanding the 15*sin(22) part. For one thing, the initial velocity is 14 m/s.


EDIT: I'm too slow.
 
  • #5
hage567 said:
You didn't actually divide by the M in the final step to get your acceleration.

Can you elaborate on how you found t? Using your value for a, I don't get the same answer that you did. Maybe you made a typo?

Ahh good catch. Okay then I get -5.49 m/s^2 for the accel and 2.73 for t. I plugged that into the y formula and get -5.12 which is obviously not right :frown:
 
  • #6
Okay... so then would just be y = 14*2.73 + (1/2)(-5.49)(2.73^2)?

Actually yeah that's wrong too
 
  • #7
I got 17.76 m for the "distance" not sure how to convert to height?
 
  • #8
haha nevermind i got it... 17.76*sin(22) = 6.65m for the height thanks guys!
 

What is kinetic friction?

Kinetic friction is the force that resists the motion of an object when it is in contact with another object or surface.

How is kinetic friction different from static friction?

Kinetic friction occurs when two objects are in motion relative to each other, while static friction occurs when two objects are not moving relative to each other.

How is the kinetic friction of a wood block calculated?

The kinetic friction of a wood block can be calculated by multiplying the coefficient of kinetic friction (μk) of the block and the force pressing the block against the surface it is moving on.

What factors affect the kinetic friction of a wood block?

The kinetic friction of a wood block can be affected by the type of surface it is moving on, the weight of the block, and the coefficient of kinetic friction between the block and the surface.

How can the kinetic friction of a wood block be reduced?

The kinetic friction of a wood block can be reduced by using lubricants, such as oil or wax, between the block and the surface, or by decreasing the weight or surface area of the block.

Similar threads

  • Introductory Physics Homework Help
Replies
4
Views
1K
  • Introductory Physics Homework Help
Replies
18
Views
2K
  • Introductory Physics Homework Help
Replies
9
Views
3K
Replies
19
Views
3K
  • Introductory Physics Homework Help
Replies
4
Views
2K
  • Introductory Physics Homework Help
Replies
6
Views
234
  • Introductory Physics Homework Help
Replies
5
Views
2K
  • Introductory Physics Homework Help
Replies
1
Views
1K
  • Introductory Physics Homework Help
Replies
9
Views
3K
  • Introductory Physics Homework Help
Replies
17
Views
4K
Back
Top