Kronig-Penney Model Homework Solution

  • Thread starter Thread starter lightfalcon
  • Start date Start date
  • Tags Tags
    Model
lightfalcon
Messages
2
Reaction score
0

Homework Statement



My homework has to do with the Kronig-Penney model for an electron moving in a 1-D periodic lattice. I already figured out part A, which asked for me to show that E(k) approached the energy of a free electron for electrons with high energies in the lattice.

Part B is asking: Find an expression for the lowest possible energy of an electron. Why isn't this zero?

Part C is asking : find an expression for the band gap at k = pi/d.

Homework Equations



cos(kd)=cos(k_{1}d)+P\frac{sin(k_{1}d)}{k_{1}d}

The Attempt at a Solution



I'm having a lot of trouble with the implicit nature of this equation in this problem. For part B, I know that cos(kd) has to be between +1 and -1, but at lower values of E, the right hand side of the equation is greater than 1, resulting in a band. That's why there is some lowest possible energy above zero. I'm just stuck on showing this numerically.

For Part C, I got
-1=cos(k_{1}d)+P\frac{sin(k_{1}d)}{k_{1}d}
and then
1+P\frac{sin(k_{1}d)}{k_{1}d}=cos(k_{1}d)

but after that I'm stuck and I'm not sure what kind of expression I'm supposed to find for the band gap.
 
Physics news on Phys.org
I'm not sure what's hiding in your k1's and P's (is k the same as k1?), but there's a really good treatment of this in McKelvey's Solid State Physics (section 8.3 in my version).
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top