Maximizing C_t with Lagrangian: First Order Condition Explained

  • Thread starter Thread starter Charlotte87
  • Start date Start date
  • Tags Tags
    Integral Lagrange
Charlotte87
Messages
18
Reaction score
0

Homework Statement


Maximize C_{t} for any given expenditure level

\int_{0}^{1}P_{t}(i)C_{t}(i)di\equiv Z_{t}

The Attempt at a Solution



The Lagrangian is given by:
L = \left(\int_{0}^{1}C_{t}(i)^{1-(1/\varepsilon)}di\right)^{\varepsilon/(\varepsilon-1)} - \lambda \left(\int_{0}^{1}P_{t}(i)C_{t}(i)di - Z_{t}\right)

I know that the first order condition is

C_{t}(i)^{-1/\varepsilon}C_{t}^{1/\varepsilon} = \lambda P_{t}(i) for all i \in (0,1)

But I do not understand how they get to this answer. Can anyone help me?
 
Last edited by a moderator:
Physics news on Phys.org
No, I have to admitt I've never heard of it...
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top