Lagrangian Mechanics: Solving for x, y, and z Dot

Gogsey
Messages
153
Reaction score
0
1). A bead is confined to moving on a wire in the shape of a porabola, given by y=bx^2. Write down the Lagrangian, with x as the generalized coordinate, and the equations of motion for this sytem.

We have L(x, bx^2)
For writing out the Lagrangian as a function of x, I get.:

L = m/2((xdot) + b(xdot0)^2 - mgbx^2

Then we get L = m/2((xdot^2) + 2b(xdot^2) +(b^2)(xdot^4)) - mgbx^2

But when I go to take tthe partial derivatives, everythin for the kinetic energy is in terms of xdot, and that leaves nothing for thetadot, so I'm a little confused.

2). Apply the Lagrangian method for a for a particle moving on a sphere using spherical coordinates.

so so x = rsin(theta)cos(phi), y = rsin(theta)sin(phi), z = rcos(theta)

so L = m/2(x^2 + y^2 + z^2) - U(r)

How do you get xdot, ydot, zdot? I know you just take the derivativebut with respect to what? Phi and Theta, since r is constant?
 
Physics news on Phys.org
the "dot" represents a time derivative; you take the derivative with respect to time and apply the chain rule
 
Yeah that's what I thought, so I get

xdot = rcos(phi)cos(theta)(thetadot) - rsin(theta)sin(phi)(phidot)

ydot = rsin(phi)cos(theta)(thetadot) + rsin(theta)cos(phi)(phidot)

zdot = -rsin(theta)(thetadot)

Then you have to square then and put them into the Lagrangian expressio, which turns out to be a hug mess? It really gets nasty. Any trig identitites I can before squaring each term?
 
Actually I think I found them.

Applying the dentities I got:

xdot = r(cos(theta + phi)(thetadot + phidot)

ydot = r(sin(theta + phi)(phidot + thetadot)

And z is the same as before.
 
Ok, so I'm not sure if those time derivatives are correct or not? Do take the derivative of the x, y and z equations with respsct to r, theta and Phi?

Trouble is, when ypu do this then you get a god awful mess, then you have to square them, and now I'm lost.

Please Help
 
Look at question no. 3 in the PDF.
 

Attachments

Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top