Lagrangian of Pendulum with Oscillating Hinge

Xyius
Messages
501
Reaction score
4
1.) The Problem Statement:

a.) Find the Lagrangian of a pendulum where the height of the hinge is oscillating in the y direction and is is defined as a function ##y_0=f(t)##

b.) Add a function (a gauge transformation) of the form ##\frac{d F(\theta,t)}{dt}## to the original lagrangian ##\mathcal{L}## to obtain a new lagrangian ##\mathcal{L}'=T'-V'## where ##T'## is the "usual kinetic energy of a pendulum" and ##V'## is the potential of a time varying gravitational field. Compare their Hamiltonians

2.) Relevant Equations

Lagranges equations

3.) Attempt at a Solution
Part a I got. The Lagrangian I got is the following. (I can go into more detail about how I got this if required)

\mathcal{L}=\frac{1}{2}m\left( l^2 \dot{\theta}^2 + \dot{y}^2_0(t) + 2 \dot{y}_0(t)l \dot{\theta} \sin\theta \right) - mg \dot{y}_0(t)+mgl\cos\theta

I know this answer is correct because for when ##y_0(t)=a\cos\omega t## it yields the equation of motion that is the same as the result in the text with a function of this form.

Part b is where I am stuck. When I see "potential of a time varying gravitational field," I think something of the form ##m g(t) y##. The only idea I can come up with is to write the function ##\frac{dF}{dt}## in a form that cancels out most of the terms of the original Lagrangian, but only keeps the kinetic term, ##\frac{1}{2}l^2\dot{\theta}^2## and other terms so that I can write the potential in the form I desire. But I cannot seem to make any headway with this, and I am very iffy on if this approach is correct or not. I think I understand the premise of the problem, instead of viewing the pendulum to have an oscillating hinge, instead cast the problem as a normal pendulum in an oscillating gravitational field. Does anyone have any thoughts or suggestions??
 
Physics news on Phys.org
Xyius said:
The only idea I can come up with is to write the function ##\frac{dF}{dt}## in a form that cancels out most of the terms of the original Lagrangian, but only keeps the kinetic term, ##\frac{1}{2}l^2\dot{\theta}^2## and other terms so that I can write the potential in the form I desire.

I think you have the right idea. You just need to play around with constructing the appropriate function F(θ,t). Take it one term at a time. For example, it is easy to construct a term in F such that dF/dt yields a term of the form ##mg\dot{y}_0##.
 
I made a typo in my original post, the one term at the end of the lagrangian should be ##mg y_0## not ##mg \dot{y_0}##.

I figured it out! I was correct in my reasoning as you pointed out, but the trick was to realize that part of the integral of the third term can be written in the form ##-ml \dot{y_0(t)}\cos\theta.## So you can re-write it in terms of it's integral and cancel out the extra terms by the gauge transformation.
 
##|\Psi|^2=\frac{1}{\sqrt{\pi b^2}}\exp(\frac{-(x-x_0)^2}{b^2}).## ##\braket{x}=\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dx\,x\exp(-\frac{(x-x_0)^2}{b^2}).## ##y=x-x_0 \quad x=y+x_0 \quad dy=dx.## The boundaries remain infinite, I believe. ##\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dy(y+x_0)\exp(\frac{-y^2}{b^2}).## ##\frac{2}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,y\exp(\frac{-y^2}{b^2})+\frac{2x_0}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,\exp(-\frac{y^2}{b^2}).## I then resolved the two...
Hello everyone, I’m considering a point charge q that oscillates harmonically about the origin along the z-axis, e.g. $$z_{q}(t)= A\sin(wt)$$ In a strongly simplified / quasi-instantaneous approximation I ignore retardation and take the electric field at the position ##r=(x,y,z)## simply to be the “Coulomb field at the charge’s instantaneous position”: $$E(r,t)=\frac{q}{4\pi\varepsilon_{0}}\frac{r-r_{q}(t)}{||r-r_{q}(t)||^{3}}$$ with $$r_{q}(t)=(0,0,z_{q}(t))$$ (I’m aware this isn’t...
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
Back
Top