Lagrangian with a charged, massive vector boson coupled to electromagnetism

jaded2112
Messages
10
Reaction score
2
Homework Statement
For this lagrangian, I am trying to find the constraints on the constants##\eta,\kappa, g,\lambda##.
Relevant Equations
$$
\textit{L}=\frac{-1}{4}\rho^\dagger_{\alpha\beta}\rho^{\alpha\beta} - m^2\rho^\dagger_{\alpha}\rho^{\alpha}-ig[(\rho^\dagger_{\alpha\beta}\rho^{\alpha} +\eta\rho_{\alpha\beta}\rho^{\dagger\alpha})A^{\beta}+\kappa\rho^{\dagger}_{\alpha}\rho_{\beta}\textit{F}^{\alpha\beta}+
$$ $$
\frac{\lambda}{m^2}\rho^{\dagger}_{\alpha\beta}\rho^{\beta}_{\sigma}\textit{F}^{\sigma\alpha}]
$$
I need to use hermiticity and electromagnetic gauge invariance to determine the constraints on the constants. Through hermiticity, i found that the coefficients need to be real. However, I am not sure how gauge invariance would come into the picture to give further contraints. I think the ##\rho^{\alpha}## field would go to ##e^{i\theta(x)}\rho^{\alpha}##, and ##\rho_{\alpha\beta} \rightarrow \partial_{\alpha}(e^{i\theta(x)}\rho_{\beta})-\partial_{\beta}(e^{i\theta(x)}\rho_{\alpha})##. So, if we consider the first two terms in the interaction part of the lagrangian, ##-ig(\rho^\dagger_{\alpha\beta}\rho^{\alpha} +\eta\rho_{\alpha\beta}\rho^{\dagger\alpha})A^{\beta}##, and do a local ##U(1)## transformation, we get $$-ig [\rho^{\dagger}_{\alpha\beta}\rho^{\alpha} + \eta\rho_{\alpha\beta}\rho^{\dagger\alpha}+i(\rho^{\dagger}_{\alpha}\rho^{\alpha}-\eta\rho_{\alpha}\rho^{\dagger\alpha})\partial_{\beta}\theta + i\partial_{\alpha}\theta(\eta\rho_{\beta}\rho^{\dagger\alpha}-\rho^{\dagger}_\beta \rho^{\alpha})](A^{\beta}+\partial^{\beta}\theta) $$
After this, I am kind of stuck trying to figure out what eta would be. Any help is appreciated.
 
Last edited:
Physics news on Phys.org
The usual idea is to write down a "free Lagrangian" of the charged fields, which in your case seems to be the Proca Lagrangian for a massive complex vector field. Then you make the symmetry under multiplication with a phase factor local by introducing the massless em. field as a "connection" to define a gauge-covariant derivative and then write such a covariant derivative instead of a usual partial derivative. This is called "minimal coupling" and is a successful heuristics that lead to the formulation of the Standard Model of elementary particle physics.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top