cdotter
- 305
- 0
Homework Statement
y'' + 3y' + 2y = u_2(t); y(0)=0, y'(0)=1
Homework Equations
L\{u_c(t)h(t-c)\}=e^{-cs}H(s)
The Attempt at a Solution
I've actually tried two laplace equation with discontinuous forcing function problems. I get answers somewhat close to the back of the book, but still off. Maybe I'm making a dumb algebra mistake? Could someone check my work over?
<br /> \begin{aligned}<br /> & L\{f(t)\}(s^2+3s+2)-1=\frac{e^{-2s}}{s}\\<br /> & L\{f(t)\}=\frac{1+e^{-2s}}{(s)(s^2+3s+2)}<br /> \end{aligned}<br />
<br /> \begin{aligned}<br /> f(t) & =L^{-1}\{\frac{1}{(s)(s^2+3s+2)}\} + L^{-1}\{\frac{e^{-2s}}{(s)(s^2+3s+2)}\} \\<br /> f(t) & =L^{-1}\{\frac{1}{(s)(s^2+3s+2)}\} + u_2(t)h(t-2)<br /> \end{aligned}<br />
Where H(s) = \{\frac{1}{(s)(s^2+3s+2)}\}
Partial fraction decomposition:
<br /> L^{-1}\{\frac{1}{(s)(s^2+3s+2)}\} = L^{-1}\{\frac{1/2}{s}\} - L^{-1}\{\frac{1}{s+1}\} + L^{-1}\{\frac{1/2}{s+2}\}
<br /> \Rightarrow f(t) = \frac{1}{2} - e^{-t} + \frac{e^{-2t}}{2} + u^2(t)h(t-2)
Where h(t)= \frac{1}{2} - e^{-t} + \frac{e^{-2t}}{2}
My book gives the answer as:
f(t)=e^{-t}-e^{-2t}+u_2(t)h(t-2) where
h(t)= \frac{1}{2} - e^{-t} + \frac{e^{-2t}}{2}
Any ideas where I messed up? :(
Last edited: