Laplace Transform (correct, or not?)

noobish
Messages
11
Reaction score
0
I wish someone would help me to verify my answer and working. I don't have the answer for the question. :frown:

http://www.mrnerdy.com/forum_img/laplace.jpg


Is there a better working method?
 
Last edited by a moderator:
Physics news on Phys.org
My browser shows that your image is broken. Can you either post it as an attachment or type it up in LaTeX?
 
im sorry. I've fixed it. :)
 
Hello Tom,

the image shows up in my browser, so I'll attach it in this post.

Regards,

nazzard
 

Attachments

  • laplace.jpg
    laplace.jpg
    17.4 KB · Views: 491
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top