Laplace Transform With Initial Values

diffeqnoob
Messages
13
Reaction score
0
Okay, I know this is alot... but I am stuck, so here goes...

Use the method of Laplace transform to solve the initial value problem

y''+3ty'-6y=0, y(0) = 1, y'(0) = 0
L\{y'' + 3ty' - 6y\} = L\{0\}
s^{2}Y(s) - sy(0) - y'(0) + 3L\{ty'\} - 6Y(s) = 0
s^{2}Y(s) - s(1) - 0 - \frac{d}{ds}\left(3 L\{ty'\}\right) -6Y(s) = 0

Now to resolve the - \frac{d}{ds}\left(3 L\{ty'\}\right)
= - \frac{d}{ds}\left(3 L\{ty'\}\right)

= - \frac{d}{ds}3 \left(sY(s) - y(0)\right)

= -3sY'(s) - 3Y(s)


Plugging it back into the eq we now have

s^{2}Y(s) - s - 3sY'(s) - 3Y(s) - 6Y(s) = 0

-3sY'(s) + (s^{2}-9)Y(s) - s = 0

Y'(s) + \left(-\frac{s}{3} + \frac{3}{s}\right)Y(s) = -\frac{1}{3}

\mu = e^{\int\left(-\frac{s}{3} + \frac{3}{s}\right)ds}

\mu = e^{\left(-\frac{s^{2}}{6} + ln(s^{3})\right)}

\mu = s^{3}e^{-\left(\frac s^{2}{6}\right)}

\int\left(\frac{d}{ds}(s^{3}e^{-\left(\frac s^{2}{6}\right)}Y(s)\right) = \int-\left(\frac{1}{3}\right)s^{3}e^{-\left(\frac s^{2}{6}\right)} ds

s^{3}e^{-\left(\frac s^{2}{6}\right)}Y(s) = \int-\left(\frac{1}{3}\right)s^{3}e^{-\left(\frac s^{2}{6}\right)} ds


RIGHT SIDE
=\left(\frac{1}{3}\right)(-3(s^{2}+6)e^{-\left(\frac{s^2}{6}\right)

=(s^2+6)e^{-\left(\frac{s^2}{6}\right) + A

Y(s)=\frac{(s^2+6)}{s^{3}} + \frac{A e^ \frac{s^2}{6}}{s^{3}}

Limit as s \rightarrow \infty Y(s) = 0 therefore A = 0

Y(s) = \frac{s^2+6}{s^3}



Break down the Inverse Laplace
L^{-1}\{\frac{s^2+6}{s^3}\}

=L^{-1}\{\frac{s^2}{s^3}\} + L^{-1}{\frac{6}{s^3}\}

=L^{-1}\{\frac{1}{s}\} + L^{-1}{\frac{6}{s^3}\}

= 1 + ?


This is where I get lost... I don't know how to do the other side... Please help.
 
Physics news on Phys.org
Why does my LaTex look all funny?
 
Thread 'Use greedy vertex coloring algorithm to prove the upper bound of χ'
Hi! I am struggling with the exercise I mentioned under "Homework statement". The exercise is about a specific "greedy vertex coloring algorithm". One definition (which matches what my book uses) can be found here: https://people.cs.uchicago.edu/~laci/HANDOUTS/greedycoloring.pdf Here is also a screenshot of the relevant parts of the linked PDF, i.e. the def. of the algorithm: Sadly I don't have much to show as far as a solution attempt goes, as I am stuck on how to proceed. I thought...
Back
Top