MHB Law of Sines in Polygon Construction - Goals & Benefits

Mathematics news on Phys.org
As the author says in the first paragraph, his goal is to demonstrate Archimedes' method of calculating the area of a circle. He does that by noting that a circle can be approximated by a regular polygon with "n" sides, all vertices on that circle- and the more sides you take, the better the approximation. He calculates the area of the polygon by drawing lines from the center of the circle to each vertex, dividing the polygon into n isosceles triangles. The area of a triangle is "1/2 base times height". In this case, the base of each triangle is the side of the polygon while height is the distance from the center of the circle to the center of the base. For n large, so that each triangle is very "skinny", that is approximately the length of the two equal sides of the triangle, the radius of the circle.

He specifically uses the sine law to calculate the length of the base. Dividing the $2\pi$ radians of a complete circle by n, the vertex angle of each triangle, at the center of the circle, is $\frac{2\pi}{n}$. Since the three angles of any triangle sum to $\pi$ radians, and the two base angles are equal, they are each $\frac{\pi- \frac{2\pi}{n}}{2}= \frac{(n-2)\pi}{2n}$.
 
Last edited:
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top