Lead is compressed reversibly with T const, find dS

  • Thread starter Thread starter Kara386
  • Start date Start date
  • Tags Tags
    Compressed Lead
Kara386
Messages
204
Reaction score
2

Homework Statement


Lead is compressed reversibly and with temperature kept constant at 300K, and from pressure of 1bar to 1000 bar. Assuming the change in volume is small, what is the change in entropy S? Use the Maxwell relation derived from Gibbs free energy function. V = ##10^{-3}m^3##.

Homework Equations


##(\frac{\partial{V}}{\partial{T}})_p = -(\frac{\partial{S}}{\partial{p}})_T## Maxwell Relation
##\kappa = \frac{1}{V}(\frac{\partial{V}}{\partial{T}})_p = 8\times 10^{-5}K^{-1}##
##\beta = -\frac{1}{V}(\frac{\partial{V}}{\partial{p}})_T = 2.2\times 10^{-6}bar^{-1}## Where the T is meant to be a subscript denoting T constant for that derivative, but I can't make it look much like a subscript.

3. The Attempt at a Solution

From the Maxwell Relation,
##\kappa V = -(\frac{\partial{S}}{\partial{p}})_T##
And since the process is isothermal and I know dP, I'm wondering whether I can't just rearrange so that
## \kappa V \partial p = \partial S##
But that seems like wrong maths in terms of how you're allowed to treat derivatives. I suppose I'm essentially asking if that manipulation is allowed, and if not, I've tried using cyclic relationships, the central equation and other Maxwell relations but I can't seem to get anywhere. So what would I do instead?!

Thanks for any help!
 
Physics news on Phys.org
Looks correct to me.
 
  • Like
Likes gcuf and Kara386
Chestermiller said:
Looks correct to me.
OK, thanks! But why can I do that without integrating? Because doesn't ##dp## represent a small change in ##p##, while we're looking at a change of ##999bar## in this case?
 
Kara386 said:
OK, thanks! But why can I do that without integrating? Because doesn't ##dp## represent a small change in ##p##, while we're looking at a change of ##999bar## in this case?
Between 1 bar and 1000 bars, the volume only changes of 0.2%. So, it is essentially constant. So, the integrand is essentially constant.
 
  • Like
Likes Kara386
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top