Learn the Chain Rule for Finding the Derivative of e^sec(x) | Homework Question

  • Thread starter Thread starter alpha01
  • Start date Start date
  • Tags Tags
    Chain Chain rule
alpha01
Messages
77
Reaction score
0

Homework Statement

derivative of esec(x)

The Attempt at a Solution

u = sec(x)
y = eu

du/dx = tan(x)sec(x)
dy/du = eu

dy/dx = dy/du * du/dx
= esec(x)tan(x)sec(x)
 
Physics news on Phys.org
alpha01 said:

Homework Statement




derivative of esec(x)



The Attempt at a Solution




u = sec(x)
y = eu

du/dx = tan(x)sec(x)
dy/du = eu

dy/dx = dy/du * du/dx
= esec(x)tan(x)sec(x)
Looks good to me :approve:
 
thanks
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...

Similar threads

Back
Top