L'Hospital's Rule for tan(x) and tan(10x) at 9pi/4: Exact Value Calculation

  • Thread starter Thread starter Tubig
  • Start date Start date
Tubig
Messages
2
Reaction score
0
lim (x approaches 9pi/4) (tanx)^tan10x

use L'Hospital's Rule to find the exact valuemy attempt:
y = lim (tanx)^tan10x
lny= lim ln(tanx)^tan10x
= tan10x lim ln(tanx)

I really don't know where to go from there

-Thanks
 
Physics news on Phys.org
In your last line, you take tan10x out of the limit without evaluating it. Put it back in and turn it into cot(10x) to put it on the bottom, then apply L'Hospital's. Make sure to apply exp at the end to get the final answer.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top