Light refraction problem in water & air

AI Thread Summary
The problem involves calculating the length of the shadow cast by a vertical pole in water and air, given sunlight's angle of incidence. The correct approach requires using the angles of refraction and geometry to find the shadow length. Initially, an error was made in identifying the opposite side for the tangent calculation. After correcting the calculations, the shadow length was determined to be 1.07 meters. This highlights the importance of accurately applying trigonometric principles in refraction problems.
MrMoose
Messages
23
Reaction score
0

Homework Statement



In the figure attached, a 2.00m long vertical pole extends from the bottom of a swimming pool to a point 50.0cm above the water. Sunlight is incident at 55.0° above the horizon. What is the length of the shadow of the pole on the level bottom of the pool?

Homework Equations



See figure attached for my drawing.

n1 = 1 for air

n2 = 1.33 for water

sin(θ2) = (n1/n2)*sin(θ1)

The Attempt at a Solution



Since N2 > N1, we know that the beam bends towards the normal.

θ1 = 90° - 55° = 35°

θ2 = arcsin[(1/1.33)*sin(35°)) = 25.55°

From here, it's geometry:

Tan(55°) = X1 / 50cm

X1 = 0.71m

Tan(25.55°) = X2/1.5m

X2 = 0.71m

X = X1 + X2 = 1.43m

According to the back of the book, this is not correct. Where am I going wrong? This seems like a really straight forward problem. Thanks in advance, MrMoose
 

Attachments

  • 65hwq.jpg
    65hwq.jpg
    36.3 KB · Views: 1,509
  • 65hw.jpg
    65hw.jpg
    13 KB · Views: 1,349
Physics news on Phys.org
MrMoose said:
From here, it's geometry:

Tan(55°) = X1 / 50cm
This is not the correct angle.
 
Hi mfb, please elaborate, I still don't see the error. Tangent of the angle is equal to the length of the opposite side over the length of the adjacent side.
 
The opposite side of your 55°-angle is the .5m of the pole, and not the length of the shadow. If you want to calculate this part in the same way as you did the part under water, you need the corresponding angle (relative to the vertical, 35°).
 
Oh wow, that was a silly mistake. So...

Tan(55°) = 50cm/X1

X1 = 0.35m

And X = X1 + X2 = 1.07m, which is the correct answer.

Thanks so much for your help.
 
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Thread 'Variable mass system : water sprayed into a moving container'
Starting with the mass considerations #m(t)# is mass of water #M_{c}# mass of container and #M(t)# mass of total system $$M(t) = M_{C} + m(t)$$ $$\Rightarrow \frac{dM(t)}{dt} = \frac{dm(t)}{dt}$$ $$P_i = Mv + u \, dm$$ $$P_f = (M + dm)(v + dv)$$ $$\Delta P = M \, dv + (v - u) \, dm$$ $$F = \frac{dP}{dt} = M \frac{dv}{dt} + (v - u) \frac{dm}{dt}$$ $$F = u \frac{dm}{dt} = \rho A u^2$$ from conservation of momentum , the cannon recoils with the same force which it applies. $$\quad \frac{dm}{dt}...
Back
Top