Felafel
- 170
- 0
Could you check my solution please?
find out for which values of ##\lambda>0## the sequence ##(a_n)## ,defined by
##a_1 = \frac{1}{2}, \quad\quad a_{n+1} = \frac{1}{2} (\lambda +a_n)^2, \quad n\in \mathbb{N^*}## converges.
If ##(a_n)## converges, find the limit.
If I assume ##a_n## converges, I can write the limit L instead of the elements of the sequence, such that:
## L=\frac{1}{2} \lambda^2 + \frac{1}{2} L^2 + \lambda L ##
and
## \lambda^2 + L^2 + 2\lambda L -2L=0##
Solving the equation, I have
## L_1=1-\lambda + \sqrt{1-2\lambda} ; L_2=1-\lambda - \sqrt{1-2\lambda} ##
##\lambda## must therefore be## ≤ \frac{1}{2}##
also, ##L_1## must equal ##L_2## due to the theorem of uniqueness of limits.
Thus, the only possible result is ##\lambda = \frac{1}{2}##.
And therefore ##L=\frac{1}{2}## too.
Homework Statement
find out for which values of ##\lambda>0## the sequence ##(a_n)## ,defined by
##a_1 = \frac{1}{2}, \quad\quad a_{n+1} = \frac{1}{2} (\lambda +a_n)^2, \quad n\in \mathbb{N^*}## converges.
If ##(a_n)## converges, find the limit.
The Attempt at a Solution
If I assume ##a_n## converges, I can write the limit L instead of the elements of the sequence, such that:
## L=\frac{1}{2} \lambda^2 + \frac{1}{2} L^2 + \lambda L ##
and
## \lambda^2 + L^2 + 2\lambda L -2L=0##
Solving the equation, I have
## L_1=1-\lambda + \sqrt{1-2\lambda} ; L_2=1-\lambda - \sqrt{1-2\lambda} ##
##\lambda## must therefore be## ≤ \frac{1}{2}##
also, ##L_1## must equal ##L_2## due to the theorem of uniqueness of limits.
Thus, the only possible result is ##\lambda = \frac{1}{2}##.
And therefore ##L=\frac{1}{2}## too.