Stuck on Applying L'Hopital's Rule to Indeterminant Form

Redoctober
Messages
46
Reaction score
1

Homework Statement



I know it needs L'Hopital but i can't get it to the indeterminant form

Limit (x-(x+2)e^(1/x)) ((inf - inf ))
x-->inf

I reached until here and then i got stuck

(1-((x+2)e^(1/x))/x)/(1/x) (1 -inf/inf)/0
 
Physics news on Phys.org
Separate limit into \lim_{x \rightarrow \infty} x(1 - e^{\frac{1}{x}}) - 2e^{\frac{1}{x}}.

Second term is easy.

First term is indeterminate of the form infinity*0, so reexpress it as \frac{1 - e^\frac{1}{x}}{\frac{1}{x}}, then let y = \frac{1}{x} and take the limit as y \rightarrow 0 using L' Hopital's Rule.
 
Oh i see :D ! Thanks a lot :)
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top