Limiting radius ratio for tetrahedral

  • Thread starter Thread starter tanaygupta2000
  • Start date Start date
  • Tags Tags
    Radius Ratio
AI Thread Summary
The discussion focuses on proving the limiting radius ratio for tetrahedral structures, specifically for coordination number 4, which is established between 0.225 and 0.414. The user successfully demonstrated the lower limit of 0.225 but seeks assistance in proving the upper limit of 0.414. It is noted that each coordination number has a minimum radius ratio, and larger ratios can be inferred from diagrams illustrating these relationships. The maximum radius ratio for a given coordination number is determined by the minimum radius ratio of the next higher coordination number. The conversation emphasizes the need for clarity on these mathematical relationships to complete the proof.
tanaygupta2000
Messages
208
Reaction score
14
Homework Statement
Prove that the tetrahedral structure (like ZnS) having a coordination number of 4 have a limiting radius ratio in the range 0.225-0.414
Relevant Equations
Pythagoras Theorem, d^2 = a^2 + a^2
I am able to prove that it is 0.225 but how do I prove that it is also 0.414?
I need to find the max. and min. packing fraction values, which I got as a function of (r1/r2)
Please help
 
Physics news on Phys.org
tanaygupta2000 said:
Homework Statement:: Prove that the tetrahedral structure (like ZnS) having a coordination number of 4 have a limiting radius ratio in the range 0.225-0.414
Relevant Equations:: Pythagoras Theorem, d^2 = a^2 + a^2

I am able to prove that it is 0.225 but how do I prove that it is also 0.414?
I need to find the max. and min. packing fraction values, which I got as a function of (r1/r2)
Please help
I’m definitely no expert but maybe this will help...

Each coordination number has a minimum value of the radius ratio (RR). Larger values of the RR are possible - you can get the general idea from this diagram. https://upload.wikimedia.org/wikipedia/commons/thumb/8/8b/Criticalradiusratio.png/800px-Criticalradiusratio.png

For a given coordination number, the maximum value of the RR is taken as the minimum value of the RR of the next coordination number. (I’m no expert so please don’t ask me why!)

What is the next possible coordination number after 4?
What is the minimum value of its RR?
 
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Back
Top