Limits and Asymptotes from a graph

  • Thread starter Thread starter Jacobpm64
  • Start date Start date
  • Tags Tags
    Graph Limits
Jacobpm64
Messages
235
Reaction score
0
I scanned the question.. it can be found here
http://img346.imageshack.us/img346/1217/picture8eq.jpg"
I think the answers are I, III, IV, which would make it C. Am i correct?
 
Last edited by a moderator:
Physics news on Phys.org
That seems right to me :smile:
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...

Similar threads

Replies
2
Views
1K
Replies
7
Views
1K
Replies
6
Views
1K
Replies
6
Views
1K
Replies
10
Views
978
Replies
11
Views
1K
Replies
2
Views
1K
Replies
5
Views
896
Back
Top