Linear Algebra: 4 Fundamental Subspaces

ChEJosh
Messages
26
Reaction score
0

Homework Statement



Without computing A, find the bases for the 4 fundamental subspaces.

[1 0 0][1 2 3 4]
[6 1 0][0 1 2 3]=A=LU
[9 8 1][0 0 1 2]

Homework Equations



N/A

The Attempt at a Solution



There was an "example" in the book. It just showed the answers.
It was:

[1 0 0][1 3 0 5]
[2 1 0][0 0 1 6]=A
[5 0 1][0 0 0 0]
Where
Row Space: Basis (1,3,0,5) and (0,0,1,6)
Column Space: Basis (1,2,5) and (0,1,0)

In the problem we have to do, I take it that the row space's basis is just the 3 rows of U similar the the example. But, I'm unsure of the column space. Is it the 3 columns of L?

And, also for the nullspace, I put U in its row reduced echelon form, and solved for the nullspace as one would normally do. Is this correct?

[1 2 3 4]
[0 1 2 3] -->
[0 0 1 2]

[1 0 0 0]
[0 1 0 -1]
[0 0 1 2]
So, the nullspace basis is (0,1, -2, 1)

And, since there isn't a zero row, there also isn't a left nullspace, correct?

Sorry if that's confusing. And, thank you in advance!
 
Physics news on Phys.org
Bump?
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top