Linear Algebra - Determining a Solution to AX = B

KingKai
Messages
34
Reaction score
0

Homework Statement


Assume that

A \left( \begin{array}{c} 1 \\ -1 \\ 2 \end{array} \right) = 0 = A \left( \begin{array}{c} 2 \\ 0 \\ 3\end{array} \right)

and that AX = B has a solution Xo= \left( \begin{array}{c} 2 \\ -1 \\ 3 \end{array} \right)

Find a two parameter family of solutions to AX = B

Homework Equations



AX = B

A \left( \begin{array}{c} 1 \\ -1 \\ 2 \end{array} \right) = 0 = A \left( \begin{array}{c} 2 \\ 0 \\ 3\end{array} \right)

The Attempt at a Solution



Representing coefficient columns of matrix A as a (A1 , A2 , A3) for corresponding n-vectors of x,

A1 - A2 + 2A3 = 2A1 + 3A3

A2 = -A1 - A3

not sure where to go from here or really what i am doing.
 
Last edited:
Physics news on Phys.org
This is more of a conceptual problem. Think about things like the homogeneous solution, particular solution, null space, etc.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top