gruba
- 203
- 1
Homework Statement
Check if L(p)(x)=(1+4x)p(x)+(x-x^2)p'(x)-(x^2+x^3)p''(x) is a linear transformation on \mathbb{R_2}[x]. If L(p)(x) is a linear transformation, find it's matrix in standard basis and check if L(p)(x) is invertible. If L(p)(x) is invertible, find the function rule of it's inverse.
Homework Equations
-Linear transformations
The Attempt at a Solution
L(p)(x) is a linear transformation if
L(z(x)+w(x))=L(z)(x)+L(w)(x) \forall z,w\in\mathbb{R_2}[x] and
L(\alpha z(x))=\alpha L(z)(x)\forall z\in \mathbb{R_2}[x],\forall\alpha\in\mathbb{R}
Let p(x)=a+bx+cx^2\Rightarrow L(p)(x)=a+(4a+2b)x+(3b+c)x^2.
Let z(x)=p+qx+rx^2 and w(x)=\alpha+\beta x+\gamma x^2.
L(z(x))=p+(4p+2q)+(3q+r)x^2 and L(w(x))=\alpha+(4\alpha+2\beta)+(3\beta+\gamma)x^2 then L(z(x))+L(w(x))=(p+\alpha)+(4p+2q+4\alpha+2\beta)x+(3q+r+3\beta+\gamma)x^2
L(z(x)+w(x))=L((p+\alpha)+(q+\beta)x+(r+\gamma)x^2).
From this \Rightarrow L(z(x)+w(x))=L(z)(x)+L(w)(x).
L(\alpha z(x))=L(\alpha p+\alpha qx+\alpha rx^2)=\alpha p+(4\alpha p+2\alpha q)x+(3\alpha q+\alpha r)x^2.
\alpha L(z)(x)=\alpha(p+(4p+2q)x+(3q+r)x^2).
From this \Rightarrow L(\alpha z(x))=\alpha L(z)(x) and L(p)(x) is a linear transformation.
Standard basis for \mathbb{R_2}[x] is \mathcal{B}=\{1,x,x^2\}.
[L]_{\mathcal{B}}=<br /> \begin{bmatrix}<br /> 1 & 0 & 0 \\<br /> 4 & 2 & 0 \\<br /> 0 & 3 & 1 \\<br /> \end{bmatrix}<br />.
Is the matrix [L]_{\mathcal{B}} correct?
If not, how to construct it?
L(p)(x) is invertible because \det [L]_{\mathcal{B}}\neq 0.
[L]^{-1}_{\mathcal{B}}=<br /> \begin{bmatrix}<br /> 1 & 0 & 0 \\<br /> -2 & 1/2 & 0 \\<br /> 6 & -3/2 & 1 \\<br /> \end{bmatrix}<br />
Function rule of L^{-1}(p)(x) can be read from [L]^{-1}_{\mathcal{B}}\Rightarrow L^{-1}(p)(x)=a+(-2a+\frac{1}{2}b)x+(6a-\frac{3}{2}b+c)x^2.
Is the function rule of L^{-1}(p)(x) correct?
If not, how to construct it?
Also, how to check if L(p)(x) is bijective?