Linear algebra: Find the span of a set

gruba
Messages
203
Reaction score
1

Homework Statement


Find the span of U=\{2,\cos x,\sin x:x\in\mathbb{R}\} (U is the subset of a space of real functions) and V=\{(a,b,b,...,b),(b,a,b,...,b),...,(b,b,b,...,a): a,b\in \mathbb{R},V\subset \mathbb{R^n},n\in\mathbb{N}\}

Homework Equations


-Vector space span
-Linear independence
-Rank

The Attempt at a Solution


Objects in U :2,\cos x,\sin x are linearly independent, so they span \mathbb{R^3}.
Let ,n=3\Rightarrow [V]= \begin{bmatrix}<br /> a &amp; b &amp; b \\<br /> b &amp; a &amp; b \\<br /> b &amp; b &amp; a \\<br /> \end{bmatrix}

rref[V]=\begin{bmatrix}<br /> 1 &amp; 0 &amp; 0 \\<br /> 0 &amp; 1 &amp; 0 \\<br /> 0 &amp; 0 &amp; 1 \\<br /> \end{bmatrix}\Rightarrow vectors in V span \mathbb{R^3}, if a,b\neq 0.

But because V\subset\mathbb{R^n}\Rightarrow vectors span \mathbb{R^{n-1}}.

Is this correct?
 
Physics news on Phys.org
gruba said:

Homework Statement


Find the span of U=\{2,\cos x,\sin x:x\in\mathbb{R}\} (U is the subset of a space of real functions) and V=\{(a,b,b,...,b),(b,a,b,...,b),...,(b,b,b,...,a): a,b\in \mathbb{R},V\subset \mathbb{R^n},n\in\mathbb{N}\}

Homework Equations


-Vector space span
-Linear independence
-Rank

The Attempt at a Solution


Objects in U :2,\cos x,\sin x are linearly independent, so they span \mathbb{R^3}.
Let ,n=3\Rightarrow [V]= \begin{bmatrix}<br /> a &amp; b &amp; b \\<br /> b &amp; a &amp; b \\<br /> b &amp; b &amp; a \\<br /> \end{bmatrix}

rref[V]=\begin{bmatrix}<br /> 1 &amp; 0 &amp; 0 \\<br /> 0 &amp; 1 &amp; 0 \\<br /> 0 &amp; 0 &amp; 1 \\<br /> \end{bmatrix}\Rightarrow vectors in V span \mathbb{R^3}, if a,b\neq 0.

But because V\subset\mathbb{R^n}\Rightarrow vectors span \mathbb{R^{n-1}}.

Is this correct?

No. Having ##a,b \neq 0## is not enough. Look at the determinant of your ##3 \times 3## matrix.
 
Ray Vickson said:
No. Having ##a,b \neq 0## is not enough. Look at the determinant of your ##3 \times 3## matrix.

Thanks, conditions a\neq b,a\neq -2b,a\neq 0,b\neq 0 must be satisfied.
But are the span of U,V correct?
Also, what happens if the previous conditions aren't satisfied?
 
gruba said:
Thanks, conditions a\neq b,a\neq -2b,a\neq 0,b\neq 0 must be satisfied.
But are the span of U,V correct?
Also, what happens if the previous conditions aren't satisfied?

That is a good question for you to think about. It might make a difference whether you have ##a = b## or ##a = -2b##.
 
gruba said:

Homework Statement


Find the span of U=\{2,\cos x,\sin x:x\in\mathbb{R}\} (U is the subset of a space of real functions) and V=\{(a,b,b,...,b),(b,a,b,...,b),...,(b,b,b,...,a): a,b\in \mathbb{R},V\subset \mathbb{R^n},n\in\mathbb{N}\}

Homework Equations


-Vector space span
-Linear independence
-Rank

The Attempt at a Solution


Objects in U :2,\cos x,\sin x are linearly independent, so they span \mathbb{R^3}.
Let ,n=3\Rightarrow [V]= \begin{bmatrix}<br /> a &amp; b &amp; b \\<br /> b &amp; a &amp; b \\<br /> b &amp; b &amp; a \\<br /> \end{bmatrix}

rref[V]=\begin{bmatrix}<br /> 1 &amp; 0 &amp; 0 \\<br /> 0 &amp; 1 &amp; 0 \\<br /> 0 &amp; 0 &amp; 1 \\<br /> \end{bmatrix}\Rightarrow vectors in V span \mathbb{R^3}, if a,b\neq 0.

But because V\subset\mathbb{R^n}\Rightarrow vectors span \mathbb{R^{n-1}}.

Is this correct?
But I think the question is on the span of ##U## , and , in your post you have that U is a subset of a function space. Function spaces are usually infinite-dimensional; I cannot think of any function space that is not.
 
gruba said:

Homework Statement


Find the span of U=\{2,\cos x,\sin x:x\in\mathbb{R}\} (U is the subset of a space of real functions) and V=\{(a,b,b,...,b),(b,a,b,...,b),...,(b,b,b,...,a): a,b\in \mathbb{R},V\subset \mathbb{R^n},n\in\mathbb{N}\}

Homework Equations


-Vector space span
-Linear independence
-Rank

The Attempt at a Solution


Objects in U :2,\cos x,\sin x are linearly independent, so they span \mathbb{R^3}.
What's the definition of span? The functions 2, cosine, and sine aren't elements of ##\mathbb{R}^3##, so how can they span ##\mathbb{R}^3##?

Let n=3\Rightarrow [V]= \begin{bmatrix}<br /> a &amp; b &amp; b \\<br /> b &amp; a &amp; b \\<br /> b &amp; b &amp; a \\<br /> \end{bmatrix}

rref[V]=\begin{bmatrix}<br /> 1 &amp; 0 &amp; 0 \\<br /> 0 &amp; 1 &amp; 0 \\<br /> 0 &amp; 0 &amp; 1 \\<br /> \end{bmatrix}\Rightarrow vectors in V span \mathbb{R^3}, if a,b\neq 0.

But because V\subset\mathbb{R^n}\Rightarrow vectors span \mathbb{R^{n-1}}.

Is this correct?
No, it's not correct. In the ##n=3## case, are you claiming the three vectors span both ##\mathbb{R}^2## and ##\mathbb{R}^3##? How can that possibly work? The elements of ##\mathbb{R}^2## are ordered pairs while the elements of ##\mathbb{R}^3## are 3-tuples.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top