gruba
- 203
- 1
Homework Statement
Find the span of U=\{2,\cos x,\sin x:x\in\mathbb{R}\} (U is the subset of a space of real functions) and V=\{(a,b,b,...,b),(b,a,b,...,b),...,(b,b,b,...,a): a,b\in \mathbb{R},V\subset \mathbb{R^n},n\in\mathbb{N}\}
Homework Equations
-Vector space span
-Linear independence
-Rank
The Attempt at a Solution
Objects in U :2,\cos x,\sin x are linearly independent, so they span \mathbb{R^3}.
Let ,n=3\Rightarrow [V]= \begin{bmatrix}<br /> a & b & b \\<br /> b & a & b \\<br /> b & b & a \\<br /> \end{bmatrix}
rref[V]=\begin{bmatrix}<br /> 1 & 0 & 0 \\<br /> 0 & 1 & 0 \\<br /> 0 & 0 & 1 \\<br /> \end{bmatrix}\Rightarrow vectors in V span \mathbb{R^3}, if a,b\neq 0.
But because V\subset\mathbb{R^n}\Rightarrow vectors span \mathbb{R^{n-1}}.
Is this correct?