Linear Algebra Homework Question

krtica
Messages
50
Reaction score
0
I am not sure where to begin. Please explain the process. I apologize for the formatting.

Q: Solve for X.

[ -1, -3 ]
[ -9, 4 ]

- 5 X=

[ -4, -3 ]
[ -6, -4 ]
 
Physics news on Phys.org
-1 - 5*x11 = -4

x11= -3/-5 = 3/5
... rinse, repeat again..

X= [x11 x12; x21 x22]
 
Thank you.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top