JeeebeZ
- 40
- 1
Homework Statement
Code:
A matrix A is skew-symmetric if A[SUP]T[/SUP] = -A. Write the matrix
B below as the sum of a symmetric matrix and a skew-symmetric matrix.
B = a b c
d e f
g h i
The Attempt at a Solution
So I'm Pretty sure that the
Symetric Matrix = B + BT
Skew Symetric Martix = B - BT
So B+BT+ B - BT should equal B but I get 2 B.
So B = 1/2((B+BT) + (B - BT))
Code:
B[SUP]T[/SUP] = a d g
b e h
c f i
Sym = B + B[SUP]T[/SUP]
= 2a b+d c+g
d+b 2e f+h
g+c h+f 2i
Skew Sym = B - B[SUP]T[/SUP]
= 0 b-d c-g
d-b 0 f-h
g-c h-f 0
So If you add Those... You get
2a 2b 2c = 2B
2d 2e 2f
2g 2h 2i
Then divide by 2 and I'm done right?