Linear Algebra - Matrix Symitry

JeeebeZ
Messages
40
Reaction score
1

Homework Statement



Code:
A matrix A is skew-symmetric if A[SUP]T[/SUP] = -A. Write the matrix
B below as the sum of a symmetric matrix and a skew-symmetric matrix.
B =  a b c
     d e f
     g h i

The Attempt at a Solution



So I'm Pretty sure that the
Symetric Matrix = B + BT
Skew Symetric Martix = B - BT

So B+BT+ B - BT should equal B but I get 2 B.

So B = 1/2((B+BT) + (B - BT))

Code:
B[SUP]T[/SUP] = a d g
     b e h
     c f i

Sym = B + B[SUP]T[/SUP]
    =  2a b+d c+g
      d+b  2e f+h
      g+c h+f  2i

Skew Sym = B - B[SUP]T[/SUP]
    =  0  b-d c-g
      d-b  0  f-h
      g-c h-f  0

So If you add Those... You get

2a 2b 2c = 2B
2d 2e 2f
2g 2h 2i

Then divide by 2 and I'm done right?
 
Physics news on Phys.org
JeeebeZ said:

Homework Statement



Code:
A matrix A is skew-symmetric if A[SUP]T[/SUP] = -A. Write the matrix
B below as the sum of a symmetric matrix and a skew-symmetric matrix.
B =  a b c
     d e f
     g h i

The Attempt at a Solution



So I'm Pretty sure that the
Symetric Matrix = B + BT
Skew Symetric Martix = B - BT

So B+BT+ B - BT should equal B but I get 2 B.

So B = 1/2((B+BT) + (B - BT))

Code:
B[SUP]T[/SUP] = a d g
     b e h
     c f i

Sym = B + B[SUP]T[/SUP]
    =  2a b+d c+g
      d+b  2e f+h
      g+c h+f  2i

Skew Sym = B - B[SUP]T[/SUP]
    =  0  b-d c-g
      d-b  0  f-h
      g-c h-f  0

So If you add Those... You get

2a 2b 2c = 2B
2d 2e 2f
2g 2h 2i

Then divide by 2 and I'm done right?
Actually, you're pretty close to getting a correct result.

The symmetric matrix you need is (1/2)(B + BT), the skew-symmetric matrix is (1/2)(B - BT) .
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top