kaitamasaki
- 20
- 0
Homework Statement
Which one of the following subsets of P_{2} (degree of 2 or below) are subspaces?
a) a_{2}t^{2} + a_{1}t + a_{0}, where a_{1} = 0 and a_{0} = 0
b) a_{2}t^{2} + a_{1}t + a_{0}, where a_{1} = 2a_{0}
c) a_{2}t^{2} + a_{1}t + a_{0}, where a_{2} + a_{1} + a_{0} = 2
Homework Equations
The Attempt at a Solution
First of all I don't even know if the question means only ONE of the three choices is a subspace, or whether I have to decide whether each of them are subspaces or not.
I know that in order for a subset to be a subspace, it must be closed under addition and multiplication.
a) would only have a_{2}t^{2}, but doesn't have the other degrees... is it not a subspace then? It is closed under addition ((a_{2}+a_{2})t^{2}) and and multiplication. Is the question implying the coefficient a2 doesn't change? So you can't have (a2)t^2 + (-a2)t^2 = 0 right?
b) I have all the terms for each degree, so I'm guessing it is a subspace?
c) I have no clue how to do this one. My guess is that I can factor out the 2 and it becomes 2(t^{2} + t + 1), but if I add two of these together, I would get 4(t^{2} + t + 1), so don't know if that is still in the subspace... does the scalar in front matter or not?
Last edited: